chore: vendor

This commit is contained in:
2024-08-04 11:06:58 +02:00
parent 2a5985e44e
commit 04aec8232f
3557 changed files with 981078 additions and 1 deletions

View File

@ -0,0 +1,341 @@
// Package utils contains tuf related utility functions however this file is hard
// forked from https://github.com/youmark/pkcs8 package. It has been further modified
// based on the requirements of Notary. For converting keys into PKCS#8 format,
// original package expected *crypto.PrivateKey interface, which then type inferred
// to either *rsa.PrivateKey or *ecdsa.PrivateKey depending on the need and later
// converted to ASN.1 DER encoded form, this whole process was superfluous here as
// keys are already being kept in ASN.1 DER format wrapped in data.PrivateKey
// structure. With these changes, package has became tightly coupled with notary as
// most of the method signatures have been updated. Moreover support for ED25519
// keys has been added as well. License for original package is following:
//
// The MIT License (MIT)
//
// # Copyright (c) 2014 youmark
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package utils
import (
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/sha1" // #nosec
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"fmt"
"golang.org/x/crypto/pbkdf2"
"github.com/theupdateframework/notary/tuf/data"
)
// Copy from crypto/x509
var (
oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1}
oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
// crypto/x509 doesn't have support for ED25519
// http://www.oid-info.com/get/1.3.6.1.4.1.11591.15.1
oidPublicKeyED25519 = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 11591, 15, 1}
)
// Copy from crypto/x509
var (
oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33}
oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}
oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34}
oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35}
)
// Copy from crypto/x509
func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) {
switch curve {
case elliptic.P224():
return oidNamedCurveP224, true
case elliptic.P256():
return oidNamedCurveP256, true
case elliptic.P384():
return oidNamedCurveP384, true
case elliptic.P521():
return oidNamedCurveP521, true
}
return nil, false
}
// Unecrypted PKCS8
var (
oidPKCS5PBKDF2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 12}
oidPBES2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 13}
oidAES256CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 42}
)
type ecPrivateKey struct {
Version int
PrivateKey []byte
NamedCurveOID asn1.ObjectIdentifier `asn1:"optional,explicit,tag:0"`
PublicKey asn1.BitString `asn1:"optional,explicit,tag:1"`
}
type privateKeyInfo struct {
Version int
PrivateKeyAlgorithm []asn1.ObjectIdentifier
PrivateKey []byte
}
// Encrypted PKCS8
type pbkdf2Params struct {
Salt []byte
IterationCount int
}
type pbkdf2Algorithms struct {
IDPBKDF2 asn1.ObjectIdentifier
PBKDF2Params pbkdf2Params
}
type pbkdf2Encs struct {
EncryAlgo asn1.ObjectIdentifier
IV []byte
}
type pbes2Params struct {
KeyDerivationFunc pbkdf2Algorithms
EncryptionScheme pbkdf2Encs
}
type pbes2Algorithms struct {
IDPBES2 asn1.ObjectIdentifier
PBES2Params pbes2Params
}
type encryptedPrivateKeyInfo struct {
EncryptionAlgorithm pbes2Algorithms
EncryptedData []byte
}
// pkcs8 reflects an ASN.1, PKCS#8 PrivateKey.
// copied from https://github.com/golang/go/blob/964639cc338db650ccadeafb7424bc8ebb2c0f6c/src/crypto/x509/pkcs8.go#L17
type pkcs8 struct {
Version int
Algo pkix.AlgorithmIdentifier
PrivateKey []byte
}
func parsePKCS8ToTufKey(der []byte) (data.PrivateKey, error) {
var key pkcs8
if _, err := asn1.Unmarshal(der, &key); err != nil {
if _, ok := err.(asn1.StructuralError); ok {
return nil, errors.New("could not decrypt private key")
}
return nil, err
}
if key.Algo.Algorithm.Equal(oidPublicKeyED25519) {
tufED25519PrivateKey, err := ED25519ToPrivateKey(key.PrivateKey)
if err != nil {
return nil, fmt.Errorf("could not convert ed25519.PrivateKey to data.PrivateKey: %v", err)
}
return tufED25519PrivateKey, nil
}
privKey, err := x509.ParsePKCS8PrivateKey(der)
if err != nil {
return nil, err
}
switch priv := privKey.(type) {
case *rsa.PrivateKey:
tufRSAPrivateKey, err := RSAToPrivateKey(priv)
if err != nil {
return nil, fmt.Errorf("could not convert rsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufRSAPrivateKey, nil
case *ecdsa.PrivateKey:
tufECDSAPrivateKey, err := ECDSAToPrivateKey(priv)
if err != nil {
return nil, fmt.Errorf("could not convert ecdsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufECDSAPrivateKey, nil
}
return nil, errors.New("unsupported key type")
}
// ParsePKCS8ToTufKey requires PKCS#8 key in DER format and returns data.PrivateKey
// Password should be provided in case of Encrypted PKCS#8 key, else it should be nil.
func ParsePKCS8ToTufKey(der []byte, password []byte) (data.PrivateKey, error) {
if password == nil {
return parsePKCS8ToTufKey(der)
}
var privKey encryptedPrivateKeyInfo
if _, err := asn1.Unmarshal(der, &privKey); err != nil {
return nil, errors.New("pkcs8: only PKCS #5 v2.0 supported")
}
if !privKey.EncryptionAlgorithm.IDPBES2.Equal(oidPBES2) {
return nil, errors.New("pkcs8: only PBES2 supported")
}
if !privKey.EncryptionAlgorithm.PBES2Params.KeyDerivationFunc.IDPBKDF2.Equal(oidPKCS5PBKDF2) {
return nil, errors.New("pkcs8: only PBKDF2 supported")
}
encParam := privKey.EncryptionAlgorithm.PBES2Params.EncryptionScheme
kdfParam := privKey.EncryptionAlgorithm.PBES2Params.KeyDerivationFunc.PBKDF2Params
switch {
case encParam.EncryAlgo.Equal(oidAES256CBC):
iv := encParam.IV
salt := kdfParam.Salt
iter := kdfParam.IterationCount
encryptedKey := privKey.EncryptedData
symkey := pbkdf2.Key(password, salt, iter, 32, sha1.New)
block, err := aes.NewCipher(symkey)
if err != nil {
return nil, err
}
mode := cipher.NewCBCDecrypter(block, iv)
mode.CryptBlocks(encryptedKey, encryptedKey)
// no need to explicitly remove padding, as ASN.1 unmarshalling will automatically discard it
key, err := parsePKCS8ToTufKey(encryptedKey)
if err != nil {
return nil, errors.New("pkcs8: incorrect password")
}
return key, nil
default:
return nil, errors.New("pkcs8: only AES-256-CBC supported")
}
}
func convertTUFKeyToPKCS8(priv data.PrivateKey) ([]byte, error) {
var pkey privateKeyInfo
switch priv.Algorithm() {
case data.RSAKey, data.RSAx509Key:
// Per RFC5958, if publicKey is present, then version is set to v2(1) else version is set to v1(0).
// But openssl set to v1 even publicKey is present
pkey.Version = 0
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 1)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyRSA
pkey.PrivateKey = priv.Private()
case data.ECDSAKey, data.ECDSAx509Key:
// To extract Curve value, parsing ECDSA key to *ecdsa.PrivateKey
eckey, err := x509.ParseECPrivateKey(priv.Private())
if err != nil {
return nil, err
}
oidNamedCurve, ok := oidFromNamedCurve(eckey.Curve)
if !ok {
return nil, errors.New("pkcs8: unknown elliptic curve")
}
// Per RFC5958, if publicKey is present, then version is set to v2(1) else version is set to v1(0).
// But openssl set to v1 even publicKey is present
pkey.Version = 1
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 2)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyECDSA
pkey.PrivateKeyAlgorithm[1] = oidNamedCurve
pkey.PrivateKey = priv.Private()
case data.ED25519Key:
pkey.Version = 0
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 1)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyED25519
pkey.PrivateKey = priv.Private()
default:
return nil, fmt.Errorf("algorithm %s not supported", priv.Algorithm())
}
return asn1.Marshal(pkey)
}
func convertTUFKeyToPKCS8Encrypted(priv data.PrivateKey, password []byte) ([]byte, error) {
// Convert private key into PKCS8 format
pkey, err := convertTUFKeyToPKCS8(priv)
if err != nil {
return nil, err
}
// Calculate key from password based on PKCS5 algorithm
// Use 8 byte salt, 16 byte IV, and 2048 iteration
iter := 2048
salt := make([]byte, 8)
iv := make([]byte, 16)
_, err = rand.Reader.Read(salt)
if err != nil {
return nil, err
}
_, err = rand.Reader.Read(iv)
if err != nil {
return nil, err
}
key := pbkdf2.Key(password, salt, iter, 32, sha1.New)
// Use AES256-CBC mode, pad plaintext with PKCS5 padding scheme
padding := aes.BlockSize - len(pkey)%aes.BlockSize
if padding > 0 {
n := len(pkey)
pkey = append(pkey, make([]byte, padding)...)
for i := 0; i < padding; i++ {
pkey[n+i] = byte(padding)
}
}
encryptedKey := make([]byte, len(pkey))
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(encryptedKey, pkey)
pbkdf2algo := pbkdf2Algorithms{oidPKCS5PBKDF2, pbkdf2Params{salt, iter}}
pbkdf2encs := pbkdf2Encs{oidAES256CBC, iv}
pbes2algo := pbes2Algorithms{oidPBES2, pbes2Params{pbkdf2algo, pbkdf2encs}}
encryptedPkey := encryptedPrivateKeyInfo{pbes2algo, encryptedKey}
return asn1.Marshal(encryptedPkey)
}
// ConvertTUFKeyToPKCS8 converts a private key (data.Private) to PKCS#8 and returns in DER format
// if password is not nil, it would convert the Private Key to Encrypted PKCS#8.
func ConvertTUFKeyToPKCS8(priv data.PrivateKey, password []byte) ([]byte, error) {
if password == nil {
return convertTUFKeyToPKCS8(priv)
}
return convertTUFKeyToPKCS8Encrypted(priv, password)
}

View File

@ -0,0 +1,31 @@
package utils
import (
"strings"
)
// RoleList is a list of roles
type RoleList []string
// Len returns the length of the list
func (r RoleList) Len() int {
return len(r)
}
// Less returns true if the item at i should be sorted
// before the item at j. It's an unstable partial ordering
// based on the number of segments, separated by "/", in
// the role name
func (r RoleList) Less(i, j int) bool {
segsI := strings.Split(r[i], "/")
segsJ := strings.Split(r[j], "/")
if len(segsI) == len(segsJ) {
return r[i] < r[j]
}
return len(segsI) < len(segsJ)
}
// Swap the items at 2 locations in the list
func (r RoleList) Swap(i, j int) {
r[i], r[j] = r[j], r[i]
}

View File

@ -0,0 +1,85 @@
package utils
import (
"fmt"
"sync"
)
// ErrEmptyStack is used when an action that requires some
// content is invoked and the stack is empty
type ErrEmptyStack struct {
action string
}
func (err ErrEmptyStack) Error() string {
return fmt.Sprintf("attempted to %s with empty stack", err.action)
}
// ErrBadTypeCast is used by PopX functions when the item
// cannot be typed to X
type ErrBadTypeCast struct{}
func (err ErrBadTypeCast) Error() string {
return "attempted to do a typed pop and item was not of type"
}
// Stack is a simple type agnostic stack implementation
type Stack struct {
s []interface{}
l sync.Mutex
}
// NewStack create a new stack
func NewStack() *Stack {
s := &Stack{
s: make([]interface{}, 0),
}
return s
}
// Push adds an item to the top of the stack.
func (s *Stack) Push(item interface{}) {
s.l.Lock()
defer s.l.Unlock()
s.s = append(s.s, item)
}
// Pop removes and returns the top item on the stack, or returns
// ErrEmptyStack if the stack has no content
func (s *Stack) Pop() (interface{}, error) {
s.l.Lock()
defer s.l.Unlock()
l := len(s.s)
if l > 0 {
item := s.s[l-1]
s.s = s.s[:l-1]
return item, nil
}
return nil, ErrEmptyStack{action: "Pop"}
}
// PopString attempts to cast the top item on the stack to the string type.
// If this succeeds, it removes and returns the top item. If the item
// is not of the string type, ErrBadTypeCast is returned. If the stack
// is empty, ErrEmptyStack is returned
func (s *Stack) PopString() (string, error) {
s.l.Lock()
defer s.l.Unlock()
l := len(s.s)
if l > 0 {
item := s.s[l-1]
if item, ok := item.(string); ok {
s.s = s.s[:l-1]
return item, nil
}
return "", ErrBadTypeCast{}
}
return "", ErrEmptyStack{action: "PopString"}
}
// Empty returns true if the stack is empty
func (s *Stack) Empty() bool {
s.l.Lock()
defer s.l.Unlock()
return len(s.s) == 0
}

View File

@ -0,0 +1,119 @@
package utils
import (
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"fmt"
"io"
"github.com/theupdateframework/notary/tuf/data"
)
// StrSliceContains checks if the given string appears in the slice
func StrSliceContains(ss []string, s string) bool {
for _, v := range ss {
if v == s {
return true
}
}
return false
}
// RoleNameSliceContains checks if the given string appears in the slice
func RoleNameSliceContains(ss []data.RoleName, s data.RoleName) bool {
for _, v := range ss {
if v == s {
return true
}
}
return false
}
// RoleNameSliceRemove removes the given RoleName from the slice, returning a new slice
func RoleNameSliceRemove(ss []data.RoleName, s data.RoleName) []data.RoleName {
res := []data.RoleName{}
for _, v := range ss {
if v != s {
res = append(res, v)
}
}
return res
}
// NoopCloser is a simple Reader wrapper that does nothing when Close is
// called
type NoopCloser struct {
io.Reader
}
// Close does nothing for a NoopCloser
func (nc *NoopCloser) Close() error {
return nil
}
// DoHash returns the digest of d using the hashing algorithm named
// in alg
func DoHash(alg string, d []byte) []byte {
switch alg {
case "sha256":
digest := sha256.Sum256(d)
return digest[:]
case "sha512":
digest := sha512.Sum512(d)
return digest[:]
}
return nil
}
// UnusedDelegationKeys prunes a list of keys, returning those that are no
// longer in use for a given targets file
func UnusedDelegationKeys(t data.SignedTargets) []string {
// compare ids to all still active key ids in all active roles
// with the targets file
found := make(map[string]bool)
for _, r := range t.Signed.Delegations.Roles {
for _, id := range r.KeyIDs {
found[id] = true
}
}
var discard []string
for id := range t.Signed.Delegations.Keys {
if !found[id] {
discard = append(discard, id)
}
}
return discard
}
// RemoveUnusedKeys determines which keys in the slice of IDs are no longer
// used in the given targets file and removes them from the delegated keys
// map
func RemoveUnusedKeys(t *data.SignedTargets) {
unusedIDs := UnusedDelegationKeys(*t)
for _, id := range unusedIDs {
delete(t.Signed.Delegations.Keys, id)
}
}
// FindRoleIndex returns the index of the role named <name> or -1 if no
// matching role is found.
func FindRoleIndex(rs []*data.Role, name data.RoleName) int {
for i, r := range rs {
if r.Name == name {
return i
}
}
return -1
}
// ConsistentName generates the appropriate HTTP URL path for the role,
// based on whether the repo is marked as consistent. The RemoteStore
// is responsible for adding file extensions.
func ConsistentName(role string, hashSHA256 []byte) string {
if len(hashSHA256) > 0 {
hash := hex.EncodeToString(hashSHA256)
return fmt.Sprintf("%s.%s", role, hash)
}
return role
}

View File

@ -0,0 +1,564 @@
package utils
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"time"
"github.com/sirupsen/logrus"
"github.com/theupdateframework/notary"
"github.com/theupdateframework/notary/tuf/data"
"golang.org/x/crypto/ed25519"
)
// CanonicalKeyID returns the ID of the public bytes version of a TUF key.
// On regular RSA/ECDSA TUF keys, this is just the key ID. On X509 RSA/ECDSA
// TUF keys, this is the key ID of the public key part of the key in the leaf cert
func CanonicalKeyID(k data.PublicKey) (string, error) {
if k == nil {
return "", errors.New("public key is nil")
}
switch k.Algorithm() {
case data.ECDSAx509Key, data.RSAx509Key:
return X509PublicKeyID(k)
default:
return k.ID(), nil
}
}
// LoadCertFromPEM returns the first certificate found in a bunch of bytes or error
// if nothing is found. Taken from https://golang.org/src/crypto/x509/cert_pool.go#L85.
func LoadCertFromPEM(pemBytes []byte) (*x509.Certificate, error) {
for len(pemBytes) > 0 {
var block *pem.Block
block, pemBytes = pem.Decode(pemBytes)
if block == nil {
return nil, errors.New("no certificates found in PEM data")
}
if block.Type != "CERTIFICATE" || len(block.Headers) != 0 {
continue
}
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
continue
}
return cert, nil
}
return nil, errors.New("no certificates found in PEM data")
}
// X509PublicKeyID returns a public key ID as a string, given a
// data.PublicKey that contains an X509 Certificate
func X509PublicKeyID(certPubKey data.PublicKey) (string, error) {
// Note that this only loads the first certificate from the public key
cert, err := LoadCertFromPEM(certPubKey.Public())
if err != nil {
return "", err
}
pubKeyBytes, err := x509.MarshalPKIXPublicKey(cert.PublicKey)
if err != nil {
return "", err
}
var key data.PublicKey
switch certPubKey.Algorithm() {
case data.ECDSAx509Key:
key = data.NewECDSAPublicKey(pubKeyBytes)
case data.RSAx509Key:
key = data.NewRSAPublicKey(pubKeyBytes)
}
return key.ID(), nil
}
func parseLegacyPrivateKey(block *pem.Block, passphrase string) (data.PrivateKey, error) {
var privKeyBytes []byte
var err error
if x509.IsEncryptedPEMBlock(block) {
privKeyBytes, err = x509.DecryptPEMBlock(block, []byte(passphrase))
if err != nil {
return nil, errors.New("could not decrypt private key")
}
} else {
privKeyBytes = block.Bytes
}
switch block.Type {
case "RSA PRIVATE KEY":
rsaPrivKey, err := x509.ParsePKCS1PrivateKey(privKeyBytes)
if err != nil {
return nil, fmt.Errorf("could not parse DER encoded key: %v", err)
}
tufRSAPrivateKey, err := RSAToPrivateKey(rsaPrivKey)
if err != nil {
return nil, fmt.Errorf("could not convert rsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufRSAPrivateKey, nil
case "EC PRIVATE KEY":
ecdsaPrivKey, err := x509.ParseECPrivateKey(privKeyBytes)
if err != nil {
return nil, fmt.Errorf("could not parse DER encoded private key: %v", err)
}
tufECDSAPrivateKey, err := ECDSAToPrivateKey(ecdsaPrivKey)
if err != nil {
return nil, fmt.Errorf("could not convert ecdsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufECDSAPrivateKey, nil
case "ED25519 PRIVATE KEY":
// We serialize ED25519 keys by concatenating the private key
// to the public key and encoding with PEM. See the
// ED25519ToPrivateKey function.
tufECDSAPrivateKey, err := ED25519ToPrivateKey(privKeyBytes)
if err != nil {
return nil, fmt.Errorf("could not convert ecdsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufECDSAPrivateKey, nil
default:
return nil, fmt.Errorf("unsupported key type %q", block.Type)
}
}
// ParsePEMPrivateKey returns a data.PrivateKey from a PEM encoded private key. It
// supports PKCS#8 as well as RSA/ECDSA (PKCS#1) only in non-FIPS mode and
// attempts to decrypt using the passphrase, if encrypted.
func ParsePEMPrivateKey(pemBytes []byte, passphrase string) (data.PrivateKey, error) {
return parsePEMPrivateKey(pemBytes, passphrase, notary.FIPSEnabled())
}
func parsePEMPrivateKey(pemBytes []byte, passphrase string, fips bool) (data.PrivateKey, error) {
block, _ := pem.Decode(pemBytes)
if block == nil {
return nil, errors.New("no valid private key found")
}
switch block.Type {
case "RSA PRIVATE KEY", "EC PRIVATE KEY", "ED25519 PRIVATE KEY":
if fips {
return nil, fmt.Errorf("%s not supported in FIPS mode", block.Type)
}
return parseLegacyPrivateKey(block, passphrase)
case "ENCRYPTED PRIVATE KEY", "PRIVATE KEY":
if passphrase == "" {
return ParsePKCS8ToTufKey(block.Bytes, nil)
}
return ParsePKCS8ToTufKey(block.Bytes, []byte(passphrase))
default:
return nil, fmt.Errorf("unsupported key type %q", block.Type)
}
}
// CertToPEM is a utility function returns a PEM encoded x509 Certificate
func CertToPEM(cert *x509.Certificate) []byte {
pemCert := pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw})
return pemCert
}
// CertChainToPEM is a utility function returns a PEM encoded chain of x509 Certificates, in the order they are passed
func CertChainToPEM(certChain []*x509.Certificate) ([]byte, error) {
var pemBytes bytes.Buffer
for _, cert := range certChain {
if err := pem.Encode(&pemBytes, &pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw}); err != nil {
return nil, err
}
}
return pemBytes.Bytes(), nil
}
// LoadCertFromFile loads the first certificate from the file provided. The
// data is expected to be PEM Encoded and contain one of more certificates
// with PEM type "CERTIFICATE"
func LoadCertFromFile(filename string) (*x509.Certificate, error) {
certs, err := LoadCertBundleFromFile(filename)
if err != nil {
return nil, err
}
return certs[0], nil
}
// LoadCertBundleFromFile loads certificates from the []byte provided. The
// data is expected to be PEM Encoded and contain one of more certificates
// with PEM type "CERTIFICATE"
func LoadCertBundleFromFile(filename string) ([]*x509.Certificate, error) {
b, err := ioutil.ReadFile(filename)
if err != nil {
return nil, err
}
return LoadCertBundleFromPEM(b)
}
// LoadCertBundleFromPEM loads certificates from the []byte provided. The
// data is expected to be PEM Encoded and contain one of more certificates
// with PEM type "CERTIFICATE"
func LoadCertBundleFromPEM(pemBytes []byte) ([]*x509.Certificate, error) {
certificates := []*x509.Certificate{}
var block *pem.Block
block, pemBytes = pem.Decode(pemBytes)
for ; block != nil; block, pemBytes = pem.Decode(pemBytes) {
if block.Type == "CERTIFICATE" {
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
return nil, err
}
certificates = append(certificates, cert)
} else {
return nil, fmt.Errorf("invalid pem block type: %s", block.Type)
}
}
if len(certificates) == 0 {
return nil, fmt.Errorf("no valid certificates found")
}
return certificates, nil
}
// GetLeafCerts parses a list of x509 Certificates and returns all of them
// that aren't CA
func GetLeafCerts(certs []*x509.Certificate) []*x509.Certificate {
var leafCerts []*x509.Certificate
for _, cert := range certs {
if cert.IsCA {
continue
}
leafCerts = append(leafCerts, cert)
}
return leafCerts
}
// GetIntermediateCerts parses a list of x509 Certificates and returns all of the
// ones marked as a CA, to be used as intermediates
func GetIntermediateCerts(certs []*x509.Certificate) []*x509.Certificate {
var intCerts []*x509.Certificate
for _, cert := range certs {
if cert.IsCA {
intCerts = append(intCerts, cert)
}
}
return intCerts
}
// ParsePEMPublicKey returns a data.PublicKey from a PEM encoded public key or certificate.
func ParsePEMPublicKey(pubKeyBytes []byte) (data.PublicKey, error) {
pemBlock, _ := pem.Decode(pubKeyBytes)
if pemBlock == nil {
return nil, errors.New("no valid public key found")
}
switch pemBlock.Type {
case "CERTIFICATE":
cert, err := x509.ParseCertificate(pemBlock.Bytes)
if err != nil {
return nil, fmt.Errorf("could not parse provided certificate: %v", err)
}
err = ValidateCertificate(cert, true)
if err != nil {
return nil, fmt.Errorf("invalid certificate: %v", err)
}
return CertToKey(cert), nil
case "PUBLIC KEY":
keyType, err := keyTypeForPublicKey(pemBlock.Bytes)
if err != nil {
return nil, err
}
return data.NewPublicKey(keyType, pemBlock.Bytes), nil
default:
return nil, fmt.Errorf("unsupported PEM block type %q, expected CERTIFICATE or PUBLIC KEY", pemBlock.Type)
}
}
func keyTypeForPublicKey(pubKeyBytes []byte) (string, error) {
pub, err := x509.ParsePKIXPublicKey(pubKeyBytes)
if err != nil {
return "", fmt.Errorf("unable to parse pem encoded public key: %v", err)
}
switch pub.(type) {
case *ecdsa.PublicKey:
return data.ECDSAKey, nil
case *rsa.PublicKey:
return data.RSAKey, nil
}
return "", fmt.Errorf("unknown public key format")
}
// ValidateCertificate returns an error if the certificate is not valid for notary
// Currently this is only ensuring the public key has a large enough modulus if RSA,
// using a non SHA1 signature algorithm, and an optional time expiry check
func ValidateCertificate(c *x509.Certificate, checkExpiry bool) error {
if (c.NotBefore).After(c.NotAfter) {
return fmt.Errorf("certificate validity window is invalid")
}
// Can't have SHA1 sig algorithm
if c.SignatureAlgorithm == x509.SHA1WithRSA || c.SignatureAlgorithm == x509.DSAWithSHA1 || c.SignatureAlgorithm == x509.ECDSAWithSHA1 {
return fmt.Errorf("certificate with CN %s uses invalid SHA1 signature algorithm", c.Subject.CommonName)
}
// If we have an RSA key, make sure it's long enough
if c.PublicKeyAlgorithm == x509.RSA {
rsaKey, ok := c.PublicKey.(*rsa.PublicKey)
if !ok {
return fmt.Errorf("unable to parse RSA public key")
}
if rsaKey.N.BitLen() < notary.MinRSABitSize {
return fmt.Errorf("RSA bit length is too short")
}
}
if checkExpiry {
now := time.Now()
tomorrow := now.AddDate(0, 0, 1)
// Give one day leeway on creation "before" time, check "after" against today
if (tomorrow).Before(c.NotBefore) || now.After(c.NotAfter) {
return data.ErrCertExpired{CN: c.Subject.CommonName}
}
// If this certificate is expiring within 6 months, put out a warning
if (c.NotAfter).Before(time.Now().AddDate(0, 6, 0)) {
logrus.Warnf("certificate with CN %s is near expiry", c.Subject.CommonName)
}
}
return nil
}
// GenerateKey returns a new private key using the provided algorithm or an
// error detailing why the key could not be generated
func GenerateKey(algorithm string) (data.PrivateKey, error) {
switch algorithm {
case data.ECDSAKey:
return GenerateECDSAKey(rand.Reader)
case data.ED25519Key:
return GenerateED25519Key(rand.Reader)
}
return nil, fmt.Errorf("private key type not supported for key generation: %s", algorithm)
}
// RSAToPrivateKey converts an rsa.Private key to a TUF data.PrivateKey type
func RSAToPrivateKey(rsaPrivKey *rsa.PrivateKey) (data.PrivateKey, error) {
// Get a DER-encoded representation of the PublicKey
rsaPubBytes, err := x509.MarshalPKIXPublicKey(&rsaPrivKey.PublicKey)
if err != nil {
return nil, fmt.Errorf("failed to marshal public key: %v", err)
}
// Get a DER-encoded representation of the PrivateKey
rsaPrivBytes := x509.MarshalPKCS1PrivateKey(rsaPrivKey)
pubKey := data.NewRSAPublicKey(rsaPubBytes)
return data.NewRSAPrivateKey(pubKey, rsaPrivBytes)
}
// GenerateECDSAKey generates an ECDSA Private key and returns a TUF PrivateKey
func GenerateECDSAKey(random io.Reader) (data.PrivateKey, error) {
ecdsaPrivKey, err := ecdsa.GenerateKey(elliptic.P256(), random)
if err != nil {
return nil, err
}
tufPrivKey, err := ECDSAToPrivateKey(ecdsaPrivKey)
if err != nil {
return nil, err
}
logrus.Debugf("generated ECDSA key with keyID: %s", tufPrivKey.ID())
return tufPrivKey, nil
}
// GenerateED25519Key generates an ED25519 private key and returns a TUF
// PrivateKey. The serialization format we use is just the public key bytes
// followed by the private key bytes
func GenerateED25519Key(random io.Reader) (data.PrivateKey, error) {
pub, priv, err := ed25519.GenerateKey(random)
if err != nil {
return nil, err
}
var serialized [ed25519.PublicKeySize + ed25519.PrivateKeySize]byte
copy(serialized[:], pub[:])
copy(serialized[ed25519.PublicKeySize:], priv[:])
tufPrivKey, err := ED25519ToPrivateKey(serialized[:])
if err != nil {
return nil, err
}
logrus.Debugf("generated ED25519 key with keyID: %s", tufPrivKey.ID())
return tufPrivKey, nil
}
// ECDSAToPrivateKey converts an ecdsa.Private key to a TUF data.PrivateKey type
func ECDSAToPrivateKey(ecdsaPrivKey *ecdsa.PrivateKey) (data.PrivateKey, error) {
// Get a DER-encoded representation of the PublicKey
ecdsaPubBytes, err := x509.MarshalPKIXPublicKey(&ecdsaPrivKey.PublicKey)
if err != nil {
return nil, fmt.Errorf("failed to marshal public key: %v", err)
}
// Get a DER-encoded representation of the PrivateKey
ecdsaPrivKeyBytes, err := x509.MarshalECPrivateKey(ecdsaPrivKey)
if err != nil {
return nil, fmt.Errorf("failed to marshal private key: %v", err)
}
pubKey := data.NewECDSAPublicKey(ecdsaPubBytes)
return data.NewECDSAPrivateKey(pubKey, ecdsaPrivKeyBytes)
}
// ED25519ToPrivateKey converts a serialized ED25519 key to a TUF
// data.PrivateKey type
func ED25519ToPrivateKey(privKeyBytes []byte) (data.PrivateKey, error) {
if len(privKeyBytes) != ed25519.PublicKeySize+ed25519.PrivateKeySize {
return nil, errors.New("malformed ed25519 private key")
}
pubKey := data.NewED25519PublicKey(privKeyBytes[:ed25519.PublicKeySize])
return data.NewED25519PrivateKey(*pubKey, privKeyBytes)
}
// ExtractPrivateKeyAttributes extracts role and gun values from private key bytes
func ExtractPrivateKeyAttributes(pemBytes []byte) (data.RoleName, data.GUN, error) {
return extractPrivateKeyAttributes(pemBytes, notary.FIPSEnabled())
}
func extractPrivateKeyAttributes(pemBytes []byte, fips bool) (data.RoleName, data.GUN, error) {
block, _ := pem.Decode(pemBytes)
if block == nil {
return "", "", errors.New("PEM block is empty")
}
switch block.Type {
case "RSA PRIVATE KEY", "EC PRIVATE KEY", "ED25519 PRIVATE KEY":
if fips {
return "", "", fmt.Errorf("%s not supported in FIPS mode", block.Type)
}
case "PRIVATE KEY", "ENCRYPTED PRIVATE KEY":
// do nothing for PKCS#8 keys
default:
return "", "", errors.New("unknown key format")
}
return data.RoleName(block.Headers["role"]), data.GUN(block.Headers["gun"]), nil
}
// ConvertPrivateKeyToPKCS8 converts a data.PrivateKey to PKCS#8 Format
func ConvertPrivateKeyToPKCS8(key data.PrivateKey, role data.RoleName, gun data.GUN, passphrase string) ([]byte, error) {
var (
err error
der []byte
blockType = "PRIVATE KEY"
)
if passphrase == "" {
der, err = ConvertTUFKeyToPKCS8(key, nil)
} else {
blockType = "ENCRYPTED PRIVATE KEY"
der, err = ConvertTUFKeyToPKCS8(key, []byte(passphrase))
}
if err != nil {
return nil, fmt.Errorf("unable to convert to PKCS8 key")
}
headers := make(map[string]string)
if role != "" {
headers["role"] = role.String()
}
if gun != "" {
headers["gun"] = gun.String()
}
return pem.EncodeToMemory(&pem.Block{Bytes: der, Type: blockType, Headers: headers}), nil
}
// CertToKey transforms a single input certificate into its corresponding
// PublicKey
func CertToKey(cert *x509.Certificate) data.PublicKey {
block := pem.Block{Type: "CERTIFICATE", Bytes: cert.Raw}
pemdata := pem.EncodeToMemory(&block)
switch cert.PublicKeyAlgorithm {
case x509.RSA:
return data.NewRSAx509PublicKey(pemdata)
case x509.ECDSA:
return data.NewECDSAx509PublicKey(pemdata)
default:
logrus.Debugf("Unknown key type parsed from certificate: %v", cert.PublicKeyAlgorithm)
return nil
}
}
// CertsToKeys transforms each of the input certificate chains into its corresponding
// PublicKey
func CertsToKeys(leafCerts map[string]*x509.Certificate, intCerts map[string][]*x509.Certificate) map[string]data.PublicKey {
keys := make(map[string]data.PublicKey)
for id, leafCert := range leafCerts {
if key, err := CertBundleToKey(leafCert, intCerts[id]); err == nil {
keys[key.ID()] = key
}
}
return keys
}
// CertBundleToKey creates a TUF key from a leaf certs and a list of
// intermediates
func CertBundleToKey(leafCert *x509.Certificate, intCerts []*x509.Certificate) (data.PublicKey, error) {
certBundle := []*x509.Certificate{leafCert}
certBundle = append(certBundle, intCerts...)
certChainPEM, err := CertChainToPEM(certBundle)
if err != nil {
return nil, err
}
var newKey data.PublicKey
// Use the leaf cert's public key algorithm for typing
switch leafCert.PublicKeyAlgorithm {
case x509.RSA:
newKey = data.NewRSAx509PublicKey(certChainPEM)
case x509.ECDSA:
newKey = data.NewECDSAx509PublicKey(certChainPEM)
default:
logrus.Debugf("Unknown key type parsed from certificate: %v", leafCert.PublicKeyAlgorithm)
return nil, x509.ErrUnsupportedAlgorithm
}
return newKey, nil
}
// NewCertificate returns an X509 Certificate following a template, given a Common Name and validity interval.
func NewCertificate(commonName string, startTime, endTime time.Time) (*x509.Certificate, error) {
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
if err != nil {
return nil, fmt.Errorf("failed to generate new certificate: %v", err)
}
return &x509.Certificate{
SerialNumber: serialNumber,
Subject: pkix.Name{
CommonName: commonName,
},
NotBefore: startTime,
NotAfter: endTime,
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageCodeSigning},
BasicConstraintsValid: true,
}, nil
}