chore: deps and vendor

This commit is contained in:
2024-12-27 13:47:45 +01:00
parent 671e1ca276
commit 18df498295
245 changed files with 9652 additions and 3484 deletions

View File

@ -149,7 +149,7 @@ func (s *ServerConfig) AddHostKey(key Signer) {
}
// cachedPubKey contains the results of querying whether a public key is
// acceptable for a user.
// acceptable for a user. This is a FIFO cache.
type cachedPubKey struct {
user string
pubKeyData []byte
@ -157,7 +157,13 @@ type cachedPubKey struct {
perms *Permissions
}
const maxCachedPubKeys = 16
// maxCachedPubKeys is the number of cache entries we store.
//
// Due to consistent misuse of the PublicKeyCallback API, we have reduced this
// to 1, such that the only key in the cache is the most recently seen one. This
// forces the behavior that the last call to PublicKeyCallback will always be
// with the key that is used for authentication.
const maxCachedPubKeys = 1
// pubKeyCache caches tests for public keys. Since SSH clients
// will query whether a public key is acceptable before attempting to
@ -179,9 +185,10 @@ func (c *pubKeyCache) get(user string, pubKeyData []byte) (cachedPubKey, bool) {
// add adds the given tuple to the cache.
func (c *pubKeyCache) add(candidate cachedPubKey) {
if len(c.keys) < maxCachedPubKeys {
c.keys = append(c.keys, candidate)
if len(c.keys) >= maxCachedPubKeys {
c.keys = c.keys[1:]
}
c.keys = append(c.keys, candidate)
}
// ServerConn is an authenticated SSH connection, as seen from the

View File

@ -1,50 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package constraints defines a set of useful constraints to be used
// with type parameters.
package constraints
// Signed is a constraint that permits any signed integer type.
// If future releases of Go add new predeclared signed integer types,
// this constraint will be modified to include them.
type Signed interface {
~int | ~int8 | ~int16 | ~int32 | ~int64
}
// Unsigned is a constraint that permits any unsigned integer type.
// If future releases of Go add new predeclared unsigned integer types,
// this constraint will be modified to include them.
type Unsigned interface {
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
}
// Integer is a constraint that permits any integer type.
// If future releases of Go add new predeclared integer types,
// this constraint will be modified to include them.
type Integer interface {
Signed | Unsigned
}
// Float is a constraint that permits any floating-point type.
// If future releases of Go add new predeclared floating-point types,
// this constraint will be modified to include them.
type Float interface {
~float32 | ~float64
}
// Complex is a constraint that permits any complex numeric type.
// If future releases of Go add new predeclared complex numeric types,
// this constraint will be modified to include them.
type Complex interface {
~complex64 | ~complex128
}
// Ordered is a constraint that permits any ordered type: any type
// that supports the operators < <= >= >.
// If future releases of Go add new ordered types,
// this constraint will be modified to include them.
type Ordered interface {
Integer | Float | ~string
}

View File

@ -1,44 +0,0 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package slices
import "golang.org/x/exp/constraints"
// min is a version of the predeclared function from the Go 1.21 release.
func min[T constraints.Ordered](a, b T) T {
if a < b || isNaN(a) {
return a
}
return b
}
// max is a version of the predeclared function from the Go 1.21 release.
func max[T constraints.Ordered](a, b T) T {
if a > b || isNaN(a) {
return a
}
return b
}
// cmpLess is a copy of cmp.Less from the Go 1.21 release.
func cmpLess[T constraints.Ordered](x, y T) bool {
return (isNaN(x) && !isNaN(y)) || x < y
}
// cmpCompare is a copy of cmp.Compare from the Go 1.21 release.
func cmpCompare[T constraints.Ordered](x, y T) int {
xNaN := isNaN(x)
yNaN := isNaN(y)
if xNaN && yNaN {
return 0
}
if xNaN || x < y {
return -1
}
if yNaN || x > y {
return +1
}
return 0
}

View File

@ -6,26 +6,22 @@
package slices
import (
"unsafe"
"golang.org/x/exp/constraints"
"cmp"
"slices"
)
// TODO(adonovan): when https://go.dev/issue/32816 is accepted, all of
// these functions should be annotated (provisionally with "//go:fix
// inline") so that tools can safely and automatically replace calls
// to exp/slices with calls to std slices by inlining them.
// Equal reports whether two slices are equal: the same length and all
// elements equal. If the lengths are different, Equal returns false.
// Otherwise, the elements are compared in increasing index order, and the
// comparison stops at the first unequal pair.
// Floating point NaNs are not considered equal.
func Equal[S ~[]E, E comparable](s1, s2 S) bool {
if len(s1) != len(s2) {
return false
}
for i := range s1 {
if s1[i] != s2[i] {
return false
}
}
return true
return slices.Equal(s1, s2)
}
// EqualFunc reports whether two slices are equal using an equality
@ -34,16 +30,7 @@ func Equal[S ~[]E, E comparable](s1, s2 S) bool {
// increasing index order, and the comparison stops at the first index
// for which eq returns false.
func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if !eq(v1, v2) {
return false
}
}
return true
return slices.EqualFunc(s1, s2, eq)
}
// Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair
@ -53,20 +40,8 @@ func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) boo
// If both slices are equal until one of them ends, the shorter slice is
// considered less than the longer one.
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
func Compare[S ~[]E, E constraints.Ordered](s1, s2 S) int {
for i, v1 := range s1 {
if i >= len(s2) {
return +1
}
v2 := s2[i]
if c := cmpCompare(v1, v2); c != 0 {
return c
}
}
if len(s1) < len(s2) {
return -1
}
return 0
func Compare[S ~[]E, E cmp.Ordered](s1, s2 S) int {
return slices.Compare(s1, s2)
}
// CompareFunc is like [Compare] but uses a custom comparison function on each
@ -75,52 +50,30 @@ func Compare[S ~[]E, E constraints.Ordered](s1, s2 S) int {
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
// and +1 if len(s1) > len(s2).
func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int {
for i, v1 := range s1 {
if i >= len(s2) {
return +1
}
v2 := s2[i]
if c := cmp(v1, v2); c != 0 {
return c
}
}
if len(s1) < len(s2) {
return -1
}
return 0
return slices.CompareFunc(s1, s2, cmp)
}
// Index returns the index of the first occurrence of v in s,
// or -1 if not present.
func Index[S ~[]E, E comparable](s S, v E) int {
for i := range s {
if v == s[i] {
return i
}
}
return -1
return slices.Index(s, v)
}
// IndexFunc returns the first index i satisfying f(s[i]),
// or -1 if none do.
func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int {
for i := range s {
if f(s[i]) {
return i
}
}
return -1
return slices.IndexFunc(s, f)
}
// Contains reports whether v is present in s.
func Contains[S ~[]E, E comparable](s S, v E) bool {
return Index(s, v) >= 0
return slices.Contains(s, v)
}
// ContainsFunc reports whether at least one
// element e of s satisfies f(e).
func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
return IndexFunc(s, f) >= 0
return slices.ContainsFunc(s, f)
}
// Insert inserts the values v... into s at index i,
@ -131,92 +84,7 @@ func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
// Insert panics if i is out of range.
// This function is O(len(s) + len(v)).
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
m := len(v)
if m == 0 {
return s
}
n := len(s)
if i == n {
return append(s, v...)
}
if n+m > cap(s) {
// Use append rather than make so that we bump the size of
// the slice up to the next storage class.
// This is what Grow does but we don't call Grow because
// that might copy the values twice.
s2 := append(s[:i], make(S, n+m-i)...)
copy(s2[i:], v)
copy(s2[i+m:], s[i:])
return s2
}
s = s[:n+m]
// before:
// s: aaaaaaaabbbbccccccccdddd
// ^ ^ ^ ^
// i i+m n n+m
// after:
// s: aaaaaaaavvvvbbbbcccccccc
// ^ ^ ^ ^
// i i+m n n+m
//
// a are the values that don't move in s.
// v are the values copied in from v.
// b and c are the values from s that are shifted up in index.
// d are the values that get overwritten, never to be seen again.
if !overlaps(v, s[i+m:]) {
// Easy case - v does not overlap either the c or d regions.
// (It might be in some of a or b, or elsewhere entirely.)
// The data we copy up doesn't write to v at all, so just do it.
copy(s[i+m:], s[i:])
// Now we have
// s: aaaaaaaabbbbbbbbcccccccc
// ^ ^ ^ ^
// i i+m n n+m
// Note the b values are duplicated.
copy(s[i:], v)
// Now we have
// s: aaaaaaaavvvvbbbbcccccccc
// ^ ^ ^ ^
// i i+m n n+m
// That's the result we want.
return s
}
// The hard case - v overlaps c or d. We can't just shift up
// the data because we'd move or clobber the values we're trying
// to insert.
// So instead, write v on top of d, then rotate.
copy(s[n:], v)
// Now we have
// s: aaaaaaaabbbbccccccccvvvv
// ^ ^ ^ ^
// i i+m n n+m
rotateRight(s[i:], m)
// Now we have
// s: aaaaaaaavvvvbbbbcccccccc
// ^ ^ ^ ^
// i i+m n n+m
// That's the result we want.
return s
}
// clearSlice sets all elements up to the length of s to the zero value of E.
// We may use the builtin clear func instead, and remove clearSlice, when upgrading
// to Go 1.21+.
func clearSlice[S ~[]E, E any](s S) {
var zero E
for i := range s {
s[i] = zero
}
return slices.Insert(s, i, v...)
}
// Delete removes the elements s[i:j] from s, returning the modified slice.
@ -225,135 +93,27 @@ func clearSlice[S ~[]E, E any](s S) {
// make a single call deleting them all together than to delete one at a time.
// Delete zeroes the elements s[len(s)-(j-i):len(s)].
func Delete[S ~[]E, E any](s S, i, j int) S {
_ = s[i:j:len(s)] // bounds check
if i == j {
return s
}
oldlen := len(s)
s = append(s[:i], s[j:]...)
clearSlice(s[len(s):oldlen]) // zero/nil out the obsolete elements, for GC
return s
return slices.Delete(s, i, j)
}
// DeleteFunc removes any elements from s for which del returns true,
// returning the modified slice.
// DeleteFunc zeroes the elements between the new length and the original length.
func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
i := IndexFunc(s, del)
if i == -1 {
return s
}
// Don't start copying elements until we find one to delete.
for j := i + 1; j < len(s); j++ {
if v := s[j]; !del(v) {
s[i] = v
i++
}
}
clearSlice(s[i:]) // zero/nil out the obsolete elements, for GC
return s[:i]
return slices.DeleteFunc(s, del)
}
// Replace replaces the elements s[i:j] by the given v, and returns the
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
// When len(v) < (j-i), Replace zeroes the elements between the new length and the original length.
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
_ = s[i:j] // verify that i:j is a valid subslice
if i == j {
return Insert(s, i, v...)
}
if j == len(s) {
return append(s[:i], v...)
}
tot := len(s[:i]) + len(v) + len(s[j:])
if tot > cap(s) {
// Too big to fit, allocate and copy over.
s2 := append(s[:i], make(S, tot-i)...) // See Insert
copy(s2[i:], v)
copy(s2[i+len(v):], s[j:])
return s2
}
r := s[:tot]
if i+len(v) <= j {
// Easy, as v fits in the deleted portion.
copy(r[i:], v)
if i+len(v) != j {
copy(r[i+len(v):], s[j:])
}
clearSlice(s[tot:]) // zero/nil out the obsolete elements, for GC
return r
}
// We are expanding (v is bigger than j-i).
// The situation is something like this:
// (example has i=4,j=8,len(s)=16,len(v)=6)
// s: aaaaxxxxbbbbbbbbyy
// ^ ^ ^ ^
// i j len(s) tot
// a: prefix of s
// x: deleted range
// b: more of s
// y: area to expand into
if !overlaps(r[i+len(v):], v) {
// Easy, as v is not clobbered by the first copy.
copy(r[i+len(v):], s[j:])
copy(r[i:], v)
return r
}
// This is a situation where we don't have a single place to which
// we can copy v. Parts of it need to go to two different places.
// We want to copy the prefix of v into y and the suffix into x, then
// rotate |y| spots to the right.
//
// v[2:] v[:2]
// | |
// s: aaaavvvvbbbbbbbbvv
// ^ ^ ^ ^
// i j len(s) tot
//
// If either of those two destinations don't alias v, then we're good.
y := len(v) - (j - i) // length of y portion
if !overlaps(r[i:j], v) {
copy(r[i:j], v[y:])
copy(r[len(s):], v[:y])
rotateRight(r[i:], y)
return r
}
if !overlaps(r[len(s):], v) {
copy(r[len(s):], v[:y])
copy(r[i:j], v[y:])
rotateRight(r[i:], y)
return r
}
// Now we know that v overlaps both x and y.
// That means that the entirety of b is *inside* v.
// So we don't need to preserve b at all; instead we
// can copy v first, then copy the b part of v out of
// v to the right destination.
k := startIdx(v, s[j:])
copy(r[i:], v)
copy(r[i+len(v):], r[i+k:])
return r
return slices.Replace(s, i, j, v...)
}
// Clone returns a copy of the slice.
// The elements are copied using assignment, so this is a shallow clone.
func Clone[S ~[]E, E any](s S) S {
// Preserve nil in case it matters.
if s == nil {
return nil
}
return append(S([]E{}), s...)
return slices.Clone(s)
}
// Compact replaces consecutive runs of equal elements with a single copy.
@ -362,40 +122,14 @@ func Clone[S ~[]E, E any](s S) S {
// which may have a smaller length.
// Compact zeroes the elements between the new length and the original length.
func Compact[S ~[]E, E comparable](s S) S {
if len(s) < 2 {
return s
}
i := 1
for k := 1; k < len(s); k++ {
if s[k] != s[k-1] {
if i != k {
s[i] = s[k]
}
i++
}
}
clearSlice(s[i:]) // zero/nil out the obsolete elements, for GC
return s[:i]
return slices.Compact(s)
}
// CompactFunc is like [Compact] but uses an equality function to compare elements.
// For runs of elements that compare equal, CompactFunc keeps the first one.
// CompactFunc zeroes the elements between the new length and the original length.
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
if len(s) < 2 {
return s
}
i := 1
for k := 1; k < len(s); k++ {
if !eq(s[k], s[k-1]) {
if i != k {
s[i] = s[k]
}
i++
}
}
clearSlice(s[i:]) // zero/nil out the obsolete elements, for GC
return s[:i]
return slices.CompactFunc(s, eq)
}
// Grow increases the slice's capacity, if necessary, to guarantee space for
@ -403,113 +137,15 @@ func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
// to the slice without another allocation. If n is negative or too large to
// allocate the memory, Grow panics.
func Grow[S ~[]E, E any](s S, n int) S {
if n < 0 {
panic("cannot be negative")
}
if n -= cap(s) - len(s); n > 0 {
// TODO(https://go.dev/issue/53888): Make using []E instead of S
// to workaround a compiler bug where the runtime.growslice optimization
// does not take effect. Revert when the compiler is fixed.
s = append([]E(s)[:cap(s)], make([]E, n)...)[:len(s)]
}
return s
return slices.Grow(s, n)
}
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
func Clip[S ~[]E, E any](s S) S {
return s[:len(s):len(s)]
}
// Rotation algorithm explanation:
//
// rotate left by 2
// start with
// 0123456789
// split up like this
// 01 234567 89
// swap first 2 and last 2
// 89 234567 01
// join first parts
// 89234567 01
// recursively rotate first left part by 2
// 23456789 01
// join at the end
// 2345678901
//
// rotate left by 8
// start with
// 0123456789
// split up like this
// 01 234567 89
// swap first 2 and last 2
// 89 234567 01
// join last parts
// 89 23456701
// recursively rotate second part left by 6
// 89 01234567
// join at the end
// 8901234567
// TODO: There are other rotate algorithms.
// This algorithm has the desirable property that it moves each element exactly twice.
// The triple-reverse algorithm is simpler and more cache friendly, but takes more writes.
// The follow-cycles algorithm can be 1-write but it is not very cache friendly.
// rotateLeft rotates b left by n spaces.
// s_final[i] = s_orig[i+r], wrapping around.
func rotateLeft[E any](s []E, r int) {
for r != 0 && r != len(s) {
if r*2 <= len(s) {
swap(s[:r], s[len(s)-r:])
s = s[:len(s)-r]
} else {
swap(s[:len(s)-r], s[r:])
s, r = s[len(s)-r:], r*2-len(s)
}
}
}
func rotateRight[E any](s []E, r int) {
rotateLeft(s, len(s)-r)
}
// swap swaps the contents of x and y. x and y must be equal length and disjoint.
func swap[E any](x, y []E) {
for i := 0; i < len(x); i++ {
x[i], y[i] = y[i], x[i]
}
}
// overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap.
func overlaps[E any](a, b []E) bool {
if len(a) == 0 || len(b) == 0 {
return false
}
elemSize := unsafe.Sizeof(a[0])
if elemSize == 0 {
return false
}
// TODO: use a runtime/unsafe facility once one becomes available. See issue 12445.
// Also see crypto/internal/alias/alias.go:AnyOverlap
return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) &&
uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1)
}
// startIdx returns the index in haystack where the needle starts.
// prerequisite: the needle must be aliased entirely inside the haystack.
func startIdx[E any](haystack, needle []E) int {
p := &needle[0]
for i := range haystack {
if p == &haystack[i] {
return i
}
}
// TODO: what if the overlap is by a non-integral number of Es?
panic("needle not found")
return slices.Clip(s)
}
// Reverse reverses the elements of the slice in place.
func Reverse[S ~[]E, E any](s S) {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
slices.Reverse(s)
}

View File

@ -2,21 +2,20 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run $GOROOT/src/sort/gen_sort_variants.go -exp
package slices
import (
"math/bits"
"golang.org/x/exp/constraints"
"cmp"
"slices"
)
// TODO(adonovan): add a "//go:fix inline" annotation to each function
// in this file; see https://go.dev/issue/32816.
// Sort sorts a slice of any ordered type in ascending order.
// When sorting floating-point numbers, NaNs are ordered before other values.
func Sort[S ~[]E, E constraints.Ordered](x S) {
n := len(x)
pdqsortOrdered(x, 0, n, bits.Len(uint(n)))
func Sort[S ~[]E, E cmp.Ordered](x S) {
slices.Sort(x)
}
// SortFunc sorts the slice x in ascending order as determined by the cmp
@ -29,118 +28,60 @@ func Sort[S ~[]E, E constraints.Ordered](x S) {
// See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
// To indicate 'uncomparable', return 0 from the function.
func SortFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
n := len(x)
pdqsortCmpFunc(x, 0, n, bits.Len(uint(n)), cmp)
slices.SortFunc(x, cmp)
}
// SortStableFunc sorts the slice x while keeping the original order of equal
// elements, using cmp to compare elements in the same way as [SortFunc].
func SortStableFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
stableCmpFunc(x, len(x), cmp)
slices.SortStableFunc(x, cmp)
}
// IsSorted reports whether x is sorted in ascending order.
func IsSorted[S ~[]E, E constraints.Ordered](x S) bool {
for i := len(x) - 1; i > 0; i-- {
if cmpLess(x[i], x[i-1]) {
return false
}
}
return true
func IsSorted[S ~[]E, E cmp.Ordered](x S) bool {
return slices.IsSorted(x)
}
// IsSortedFunc reports whether x is sorted in ascending order, with cmp as the
// comparison function as defined by [SortFunc].
func IsSortedFunc[S ~[]E, E any](x S, cmp func(a, b E) int) bool {
for i := len(x) - 1; i > 0; i-- {
if cmp(x[i], x[i-1]) < 0 {
return false
}
}
return true
return slices.IsSortedFunc(x, cmp)
}
// Min returns the minimal value in x. It panics if x is empty.
// For floating-point numbers, Min propagates NaNs (any NaN value in x
// forces the output to be NaN).
func Min[S ~[]E, E constraints.Ordered](x S) E {
if len(x) < 1 {
panic("slices.Min: empty list")
}
m := x[0]
for i := 1; i < len(x); i++ {
m = min(m, x[i])
}
return m
func Min[S ~[]E, E cmp.Ordered](x S) E {
return slices.Min(x)
}
// MinFunc returns the minimal value in x, using cmp to compare elements.
// It panics if x is empty. If there is more than one minimal element
// according to the cmp function, MinFunc returns the first one.
func MinFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E {
if len(x) < 1 {
panic("slices.MinFunc: empty list")
}
m := x[0]
for i := 1; i < len(x); i++ {
if cmp(x[i], m) < 0 {
m = x[i]
}
}
return m
return slices.MinFunc(x, cmp)
}
// Max returns the maximal value in x. It panics if x is empty.
// For floating-point E, Max propagates NaNs (any NaN value in x
// forces the output to be NaN).
func Max[S ~[]E, E constraints.Ordered](x S) E {
if len(x) < 1 {
panic("slices.Max: empty list")
}
m := x[0]
for i := 1; i < len(x); i++ {
m = max(m, x[i])
}
return m
func Max[S ~[]E, E cmp.Ordered](x S) E {
return slices.Max(x)
}
// MaxFunc returns the maximal value in x, using cmp to compare elements.
// It panics if x is empty. If there is more than one maximal element
// according to the cmp function, MaxFunc returns the first one.
func MaxFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E {
if len(x) < 1 {
panic("slices.MaxFunc: empty list")
}
m := x[0]
for i := 1; i < len(x); i++ {
if cmp(x[i], m) > 0 {
m = x[i]
}
}
return m
return slices.MaxFunc(x, cmp)
}
// BinarySearch searches for target in a sorted slice and returns the position
// where target is found, or the position where target would appear in the
// sort order; it also returns a bool saying whether the target is really found
// in the slice. The slice must be sorted in increasing order.
func BinarySearch[S ~[]E, E constraints.Ordered](x S, target E) (int, bool) {
// Inlining is faster than calling BinarySearchFunc with a lambda.
n := len(x)
// Define x[-1] < target and x[n] >= target.
// Invariant: x[i-1] < target, x[j] >= target.
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if cmpLess(x[h], target) {
i = h + 1 // preserves x[i-1] < target
} else {
j = h // preserves x[j] >= target
}
}
// i == j, x[i-1] < target, and x[j] (= x[i]) >= target => answer is i.
return i, i < n && (x[i] == target || (isNaN(x[i]) && isNaN(target)))
func BinarySearch[S ~[]E, E cmp.Ordered](x S, target E) (int, bool) {
return slices.BinarySearch(x, target)
}
// BinarySearchFunc works like [BinarySearch], but uses a custom comparison
@ -151,47 +92,5 @@ func BinarySearch[S ~[]E, E constraints.Ordered](x S, target E) (int, bool) {
// cmp must implement the same ordering as the slice, such that if
// cmp(a, t) < 0 and cmp(b, t) >= 0, then a must precede b in the slice.
func BinarySearchFunc[S ~[]E, E, T any](x S, target T, cmp func(E, T) int) (int, bool) {
n := len(x)
// Define cmp(x[-1], target) < 0 and cmp(x[n], target) >= 0 .
// Invariant: cmp(x[i - 1], target) < 0, cmp(x[j], target) >= 0.
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if cmp(x[h], target) < 0 {
i = h + 1 // preserves cmp(x[i - 1], target) < 0
} else {
j = h // preserves cmp(x[j], target) >= 0
}
}
// i == j, cmp(x[i-1], target) < 0, and cmp(x[j], target) (= cmp(x[i], target)) >= 0 => answer is i.
return i, i < n && cmp(x[i], target) == 0
}
type sortedHint int // hint for pdqsort when choosing the pivot
const (
unknownHint sortedHint = iota
increasingHint
decreasingHint
)
// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
type xorshift uint64
func (r *xorshift) Next() uint64 {
*r ^= *r << 13
*r ^= *r >> 17
*r ^= *r << 5
return uint64(*r)
}
func nextPowerOfTwo(length int) uint {
return 1 << bits.Len(uint(length))
}
// isNaN reports whether x is a NaN without requiring the math package.
// This will always return false if T is not floating-point.
func isNaN[T constraints.Ordered](x T) bool {
return x != x
return slices.BinarySearchFunc(x, target, cmp)
}

View File

@ -1,479 +0,0 @@
// Code generated by gen_sort_variants.go; DO NOT EDIT.
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package slices
// insertionSortCmpFunc sorts data[a:b] using insertion sort.
func insertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && (cmp(data[j], data[j-1]) < 0); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// siftDownCmpFunc implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDownCmpFunc[E any](data []E, lo, hi, first int, cmp func(a, b E) int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && (cmp(data[first+child], data[first+child+1]) < 0) {
child++
}
if !(cmp(data[first+root], data[first+child]) < 0) {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func heapSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDownCmpFunc(data, i, hi, first, cmp)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDownCmpFunc(data, lo, i, first, cmp)
}
}
// pdqsortCmpFunc sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsortCmpFunc[E any](data []E, a, b, limit int, cmp func(a, b E) int) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSortCmpFunc(data, a, b, cmp)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSortCmpFunc(data, a, b, cmp)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatternsCmpFunc(data, a, b, cmp)
limit--
}
pivot, hint := choosePivotCmpFunc(data, a, b, cmp)
if hint == decreasingHint {
reverseRangeCmpFunc(data, a, b, cmp)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSortCmpFunc(data, a, b, cmp) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !(cmp(data[a-1], data[pivot]) < 0) {
mid := partitionEqualCmpFunc(data, a, b, pivot, cmp)
a = mid
continue
}
mid, alreadyPartitioned := partitionCmpFunc(data, a, b, pivot, cmp)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsortCmpFunc(data, a, mid, limit, cmp)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsortCmpFunc(data, mid+1, b, limit, cmp)
b = mid
}
}
}
// partitionCmpFunc does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
func partitionCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int, alreadyPartitioned bool) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && (cmp(data[i], data[a]) < 0) {
i++
}
for i <= j && !(cmp(data[j], data[a]) < 0) {
j--
}
if i > j {
data[j], data[a] = data[a], data[j]
return j, true
}
data[i], data[j] = data[j], data[i]
i++
j--
for {
for i <= j && (cmp(data[i], data[a]) < 0) {
i++
}
for i <= j && !(cmp(data[j], data[a]) < 0) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
data[j], data[a] = data[a], data[j]
return j, false
}
// partitionEqualCmpFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqualCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !(cmp(data[a], data[i]) < 0) {
i++
}
for i <= j && (cmp(data[a], data[j]) < 0) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
return i
}
// partialInsertionSortCmpFunc partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
for i < b && !(cmp(data[i], data[i-1]) < 0) {
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
data[i], data[i-1] = data[i-1], data[i]
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !(cmp(data[j], data[j-1]) < 0) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !(cmp(data[j], data[j-1]) < 0) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
}
return false
}
// breakPatternsCmpFunc scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatternsCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
other := int(uint(random.Next()) & (modulus - 1))
if other >= length {
other -= length
}
data[idx], data[a+other] = data[a+other], data[idx]
}
}
}
// choosePivotCmpFunc chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivotCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacentCmpFunc(data, i, &swaps, cmp)
j = medianAdjacentCmpFunc(data, j, &swaps, cmp)
k = medianAdjacentCmpFunc(data, k, &swaps, cmp)
}
// Find the median among i, j, k and stores it into j.
j = medianCmpFunc(data, i, j, k, &swaps, cmp)
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2CmpFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2CmpFunc[E any](data []E, a, b int, swaps *int, cmp func(a, b E) int) (int, int) {
if cmp(data[b], data[a]) < 0 {
*swaps++
return b, a
}
return a, b
}
// medianCmpFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func medianCmpFunc[E any](data []E, a, b, c int, swaps *int, cmp func(a, b E) int) int {
a, b = order2CmpFunc(data, a, b, swaps, cmp)
b, c = order2CmpFunc(data, b, c, swaps, cmp)
a, b = order2CmpFunc(data, a, b, swaps, cmp)
return b
}
// medianAdjacentCmpFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacentCmpFunc[E any](data []E, a int, swaps *int, cmp func(a, b E) int) int {
return medianCmpFunc(data, a-1, a, a+1, swaps, cmp)
}
func reverseRangeCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
i := a
j := b - 1
for i < j {
data[i], data[j] = data[j], data[i]
i++
j--
}
}
func swapRangeCmpFunc[E any](data []E, a, b, n int, cmp func(a, b E) int) {
for i := 0; i < n; i++ {
data[a+i], data[b+i] = data[b+i], data[a+i]
}
}
func stableCmpFunc[E any](data []E, n int, cmp func(a, b E) int) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSortCmpFunc(data, a, b, cmp)
a = b
b += blockSize
}
insertionSortCmpFunc(data, a, n, cmp)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMergeCmpFunc(data, a, a+blockSize, b, cmp)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMergeCmpFunc(data, a, m, n, cmp)
}
blockSize *= 2
}
}
// symMergeCmpFunc merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMergeCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := int(uint(i+j) >> 1)
if cmp(data[h], data[a]) < 0 {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
data[k], data[k+1] = data[k+1], data[k]
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := int(uint(i+j) >> 1)
if !(cmp(data[m], data[h]) < 0) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
data[k], data[k-1] = data[k-1], data[k]
}
return
}
mid := int(uint(a+b) >> 1)
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := int(uint(start+r) >> 1)
if !(cmp(data[p-c], data[c]) < 0) {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotateCmpFunc(data, start, m, end, cmp)
}
if a < start && start < mid {
symMergeCmpFunc(data, a, start, mid, cmp)
}
if mid < end && end < b {
symMergeCmpFunc(data, mid, end, b, cmp)
}
}
// rotateCmpFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
func rotateCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRangeCmpFunc(data, m-i, m, j, cmp)
i -= j
} else {
swapRangeCmpFunc(data, m-i, m+j-i, i, cmp)
j -= i
}
}
// i == j
swapRangeCmpFunc(data, m-i, m, i, cmp)
}

View File

@ -1,481 +0,0 @@
// Code generated by gen_sort_variants.go; DO NOT EDIT.
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package slices
import "golang.org/x/exp/constraints"
// insertionSortOrdered sorts data[a:b] using insertion sort.
func insertionSortOrdered[E constraints.Ordered](data []E, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && cmpLess(data[j], data[j-1]); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// siftDownOrdered implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDownOrdered[E constraints.Ordered](data []E, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && cmpLess(data[first+child], data[first+child+1]) {
child++
}
if !cmpLess(data[first+root], data[first+child]) {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func heapSortOrdered[E constraints.Ordered](data []E, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDownOrdered(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDownOrdered(data, lo, i, first)
}
}
// pdqsortOrdered sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsortOrdered[E constraints.Ordered](data []E, a, b, limit int) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSortOrdered(data, a, b)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSortOrdered(data, a, b)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatternsOrdered(data, a, b)
limit--
}
pivot, hint := choosePivotOrdered(data, a, b)
if hint == decreasingHint {
reverseRangeOrdered(data, a, b)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSortOrdered(data, a, b) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !cmpLess(data[a-1], data[pivot]) {
mid := partitionEqualOrdered(data, a, b, pivot)
a = mid
continue
}
mid, alreadyPartitioned := partitionOrdered(data, a, b, pivot)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsortOrdered(data, a, mid, limit)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsortOrdered(data, mid+1, b, limit)
b = mid
}
}
}
// partitionOrdered does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
func partitionOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && cmpLess(data[i], data[a]) {
i++
}
for i <= j && !cmpLess(data[j], data[a]) {
j--
}
if i > j {
data[j], data[a] = data[a], data[j]
return j, true
}
data[i], data[j] = data[j], data[i]
i++
j--
for {
for i <= j && cmpLess(data[i], data[a]) {
i++
}
for i <= j && !cmpLess(data[j], data[a]) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
data[j], data[a] = data[a], data[j]
return j, false
}
// partitionEqualOrdered partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqualOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int) {
data[a], data[pivot] = data[pivot], data[a]
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !cmpLess(data[a], data[i]) {
i++
}
for i <= j && cmpLess(data[a], data[j]) {
j--
}
if i > j {
break
}
data[i], data[j] = data[j], data[i]
i++
j--
}
return i
}
// partialInsertionSortOrdered partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSortOrdered[E constraints.Ordered](data []E, a, b int) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
for i < b && !cmpLess(data[i], data[i-1]) {
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
data[i], data[i-1] = data[i-1], data[i]
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !cmpLess(data[j], data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !cmpLess(data[j], data[j-1]) {
break
}
data[j], data[j-1] = data[j-1], data[j]
}
}
}
return false
}
// breakPatternsOrdered scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatternsOrdered[E constraints.Ordered](data []E, a, b int) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
other := int(uint(random.Next()) & (modulus - 1))
if other >= length {
other -= length
}
data[idx], data[a+other] = data[a+other], data[idx]
}
}
}
// choosePivotOrdered chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivotOrdered[E constraints.Ordered](data []E, a, b int) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacentOrdered(data, i, &swaps)
j = medianAdjacentOrdered(data, j, &swaps)
k = medianAdjacentOrdered(data, k, &swaps)
}
// Find the median among i, j, k and stores it into j.
j = medianOrdered(data, i, j, k, &swaps)
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2Ordered returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2Ordered[E constraints.Ordered](data []E, a, b int, swaps *int) (int, int) {
if cmpLess(data[b], data[a]) {
*swaps++
return b, a
}
return a, b
}
// medianOrdered returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func medianOrdered[E constraints.Ordered](data []E, a, b, c int, swaps *int) int {
a, b = order2Ordered(data, a, b, swaps)
b, c = order2Ordered(data, b, c, swaps)
a, b = order2Ordered(data, a, b, swaps)
return b
}
// medianAdjacentOrdered finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacentOrdered[E constraints.Ordered](data []E, a int, swaps *int) int {
return medianOrdered(data, a-1, a, a+1, swaps)
}
func reverseRangeOrdered[E constraints.Ordered](data []E, a, b int) {
i := a
j := b - 1
for i < j {
data[i], data[j] = data[j], data[i]
i++
j--
}
}
func swapRangeOrdered[E constraints.Ordered](data []E, a, b, n int) {
for i := 0; i < n; i++ {
data[a+i], data[b+i] = data[b+i], data[a+i]
}
}
func stableOrdered[E constraints.Ordered](data []E, n int) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSortOrdered(data, a, b)
a = b
b += blockSize
}
insertionSortOrdered(data, a, n)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMergeOrdered(data, a, a+blockSize, b)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMergeOrdered(data, a, m, n)
}
blockSize *= 2
}
}
// symMergeOrdered merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMergeOrdered[E constraints.Ordered](data []E, a, m, b int) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := int(uint(i+j) >> 1)
if cmpLess(data[h], data[a]) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
data[k], data[k+1] = data[k+1], data[k]
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := int(uint(i+j) >> 1)
if !cmpLess(data[m], data[h]) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
data[k], data[k-1] = data[k-1], data[k]
}
return
}
mid := int(uint(a+b) >> 1)
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := int(uint(start+r) >> 1)
if !cmpLess(data[p-c], data[c]) {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotateOrdered(data, start, m, end)
}
if a < start && start < mid {
symMergeOrdered(data, a, start, mid)
}
if mid < end && end < b {
symMergeOrdered(data, mid, end, b)
}
}
// rotateOrdered rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
func rotateOrdered[E constraints.Ordered](data []E, a, m, b int) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRangeOrdered(data, m-i, m, j)
i -= j
} else {
swapRangeOrdered(data, m-i, m+j-i, i)
j -= i
}
}
// i == j
swapRangeOrdered(data, m-i, m, i)
}

View File

@ -1490,7 +1490,7 @@ func (mh *MetaHeadersFrame) checkPseudos() error {
pf := mh.PseudoFields()
for i, hf := range pf {
switch hf.Name {
case ":method", ":path", ":scheme", ":authority":
case ":method", ":path", ":scheme", ":authority", ":protocol":
isRequest = true
case ":status":
isResponse = true
@ -1498,7 +1498,7 @@ func (mh *MetaHeadersFrame) checkPseudos() error {
return pseudoHeaderError(hf.Name)
}
// Check for duplicates.
// This would be a bad algorithm, but N is 4.
// This would be a bad algorithm, but N is 5.
// And this doesn't allocate.
for _, hf2 := range pf[:i] {
if hf.Name == hf2.Name {

View File

@ -34,10 +34,11 @@ import (
)
var (
VerboseLogs bool
logFrameWrites bool
logFrameReads bool
inTests bool
VerboseLogs bool
logFrameWrites bool
logFrameReads bool
inTests bool
disableExtendedConnectProtocol bool
)
func init() {
@ -50,6 +51,9 @@ func init() {
logFrameWrites = true
logFrameReads = true
}
if strings.Contains(e, "http2xconnect=0") {
disableExtendedConnectProtocol = true
}
}
const (
@ -141,6 +145,10 @@ func (s Setting) Valid() error {
if s.Val < 16384 || s.Val > 1<<24-1 {
return ConnectionError(ErrCodeProtocol)
}
case SettingEnableConnectProtocol:
if s.Val != 1 && s.Val != 0 {
return ConnectionError(ErrCodeProtocol)
}
}
return nil
}
@ -150,21 +158,23 @@ func (s Setting) Valid() error {
type SettingID uint16
const (
SettingHeaderTableSize SettingID = 0x1
SettingEnablePush SettingID = 0x2
SettingMaxConcurrentStreams SettingID = 0x3
SettingInitialWindowSize SettingID = 0x4
SettingMaxFrameSize SettingID = 0x5
SettingMaxHeaderListSize SettingID = 0x6
SettingHeaderTableSize SettingID = 0x1
SettingEnablePush SettingID = 0x2
SettingMaxConcurrentStreams SettingID = 0x3
SettingInitialWindowSize SettingID = 0x4
SettingMaxFrameSize SettingID = 0x5
SettingMaxHeaderListSize SettingID = 0x6
SettingEnableConnectProtocol SettingID = 0x8
)
var settingName = map[SettingID]string{
SettingHeaderTableSize: "HEADER_TABLE_SIZE",
SettingEnablePush: "ENABLE_PUSH",
SettingMaxConcurrentStreams: "MAX_CONCURRENT_STREAMS",
SettingInitialWindowSize: "INITIAL_WINDOW_SIZE",
SettingMaxFrameSize: "MAX_FRAME_SIZE",
SettingMaxHeaderListSize: "MAX_HEADER_LIST_SIZE",
SettingHeaderTableSize: "HEADER_TABLE_SIZE",
SettingEnablePush: "ENABLE_PUSH",
SettingMaxConcurrentStreams: "MAX_CONCURRENT_STREAMS",
SettingInitialWindowSize: "INITIAL_WINDOW_SIZE",
SettingMaxFrameSize: "MAX_FRAME_SIZE",
SettingMaxHeaderListSize: "MAX_HEADER_LIST_SIZE",
SettingEnableConnectProtocol: "ENABLE_CONNECT_PROTOCOL",
}
func (s SettingID) String() string {

View File

@ -932,14 +932,18 @@ func (sc *serverConn) serve(conf http2Config) {
sc.vlogf("http2: server connection from %v on %p", sc.conn.RemoteAddr(), sc.hs)
}
settings := writeSettings{
{SettingMaxFrameSize, conf.MaxReadFrameSize},
{SettingMaxConcurrentStreams, sc.advMaxStreams},
{SettingMaxHeaderListSize, sc.maxHeaderListSize()},
{SettingHeaderTableSize, conf.MaxDecoderHeaderTableSize},
{SettingInitialWindowSize, uint32(sc.initialStreamRecvWindowSize)},
}
if !disableExtendedConnectProtocol {
settings = append(settings, Setting{SettingEnableConnectProtocol, 1})
}
sc.writeFrame(FrameWriteRequest{
write: writeSettings{
{SettingMaxFrameSize, conf.MaxReadFrameSize},
{SettingMaxConcurrentStreams, sc.advMaxStreams},
{SettingMaxHeaderListSize, sc.maxHeaderListSize()},
{SettingHeaderTableSize, conf.MaxDecoderHeaderTableSize},
{SettingInitialWindowSize, uint32(sc.initialStreamRecvWindowSize)},
},
write: settings,
})
sc.unackedSettings++
@ -1801,6 +1805,9 @@ func (sc *serverConn) processSetting(s Setting) error {
sc.maxFrameSize = int32(s.Val) // the maximum valid s.Val is < 2^31
case SettingMaxHeaderListSize:
sc.peerMaxHeaderListSize = s.Val
case SettingEnableConnectProtocol:
// Receipt of this parameter by a server does not
// have any impact
default:
// Unknown setting: "An endpoint that receives a SETTINGS
// frame with any unknown or unsupported identifier MUST
@ -2231,11 +2238,17 @@ func (sc *serverConn) newWriterAndRequest(st *stream, f *MetaHeadersFrame) (*res
scheme: f.PseudoValue("scheme"),
authority: f.PseudoValue("authority"),
path: f.PseudoValue("path"),
protocol: f.PseudoValue("protocol"),
}
// extended connect is disabled, so we should not see :protocol
if disableExtendedConnectProtocol && rp.protocol != "" {
return nil, nil, sc.countError("bad_connect", streamError(f.StreamID, ErrCodeProtocol))
}
isConnect := rp.method == "CONNECT"
if isConnect {
if rp.path != "" || rp.scheme != "" || rp.authority == "" {
if rp.protocol == "" && (rp.path != "" || rp.scheme != "" || rp.authority == "") {
return nil, nil, sc.countError("bad_connect", streamError(f.StreamID, ErrCodeProtocol))
}
} else if rp.method == "" || rp.path == "" || (rp.scheme != "https" && rp.scheme != "http") {
@ -2259,6 +2272,9 @@ func (sc *serverConn) newWriterAndRequest(st *stream, f *MetaHeadersFrame) (*res
if rp.authority == "" {
rp.authority = rp.header.Get("Host")
}
if rp.protocol != "" {
rp.header.Set(":protocol", rp.protocol)
}
rw, req, err := sc.newWriterAndRequestNoBody(st, rp)
if err != nil {
@ -2285,6 +2301,7 @@ func (sc *serverConn) newWriterAndRequest(st *stream, f *MetaHeadersFrame) (*res
type requestParam struct {
method string
scheme, authority, path string
protocol string
header http.Header
}
@ -2326,7 +2343,7 @@ func (sc *serverConn) newWriterAndRequestNoBody(st *stream, rp requestParam) (*r
var url_ *url.URL
var requestURI string
if rp.method == "CONNECT" {
if rp.method == "CONNECT" && rp.protocol == "" {
url_ = &url.URL{Host: rp.authority}
requestURI = rp.authority // mimic HTTP/1 server behavior
} else {

View File

@ -368,25 +368,26 @@ type ClientConn struct {
idleTimeout time.Duration // or 0 for never
idleTimer timer
mu sync.Mutex // guards following
cond *sync.Cond // hold mu; broadcast on flow/closed changes
flow outflow // our conn-level flow control quota (cs.outflow is per stream)
inflow inflow // peer's conn-level flow control
doNotReuse bool // whether conn is marked to not be reused for any future requests
closing bool
closed bool
seenSettings bool // true if we've seen a settings frame, false otherwise
wantSettingsAck bool // we sent a SETTINGS frame and haven't heard back
goAway *GoAwayFrame // if non-nil, the GoAwayFrame we received
goAwayDebug string // goAway frame's debug data, retained as a string
streams map[uint32]*clientStream // client-initiated
streamsReserved int // incr by ReserveNewRequest; decr on RoundTrip
nextStreamID uint32
pendingRequests int // requests blocked and waiting to be sent because len(streams) == maxConcurrentStreams
pings map[[8]byte]chan struct{} // in flight ping data to notification channel
br *bufio.Reader
lastActive time.Time
lastIdle time.Time // time last idle
mu sync.Mutex // guards following
cond *sync.Cond // hold mu; broadcast on flow/closed changes
flow outflow // our conn-level flow control quota (cs.outflow is per stream)
inflow inflow // peer's conn-level flow control
doNotReuse bool // whether conn is marked to not be reused for any future requests
closing bool
closed bool
seenSettings bool // true if we've seen a settings frame, false otherwise
seenSettingsChan chan struct{} // closed when seenSettings is true or frame reading fails
wantSettingsAck bool // we sent a SETTINGS frame and haven't heard back
goAway *GoAwayFrame // if non-nil, the GoAwayFrame we received
goAwayDebug string // goAway frame's debug data, retained as a string
streams map[uint32]*clientStream // client-initiated
streamsReserved int // incr by ReserveNewRequest; decr on RoundTrip
nextStreamID uint32
pendingRequests int // requests blocked and waiting to be sent because len(streams) == maxConcurrentStreams
pings map[[8]byte]chan struct{} // in flight ping data to notification channel
br *bufio.Reader
lastActive time.Time
lastIdle time.Time // time last idle
// Settings from peer: (also guarded by wmu)
maxFrameSize uint32
maxConcurrentStreams uint32
@ -396,6 +397,17 @@ type ClientConn struct {
initialStreamRecvWindowSize int32
readIdleTimeout time.Duration
pingTimeout time.Duration
extendedConnectAllowed bool
// rstStreamPingsBlocked works around an unfortunate gRPC behavior.
// gRPC strictly limits the number of PING frames that it will receive.
// The default is two pings per two hours, but the limit resets every time
// the gRPC endpoint sends a HEADERS or DATA frame. See golang/go#70575.
//
// rstStreamPingsBlocked is set after receiving a response to a PING frame
// bundled with an RST_STREAM (see pendingResets below), and cleared after
// receiving a HEADERS or DATA frame.
rstStreamPingsBlocked bool
// pendingResets is the number of RST_STREAM frames we have sent to the peer,
// without confirming that the peer has received them. When we send a RST_STREAM,
@ -819,6 +831,7 @@ func (t *Transport) newClientConn(c net.Conn, singleUse bool) (*ClientConn, erro
peerMaxHeaderListSize: 0xffffffffffffffff, // "infinite", per spec. Use 2^64-1 instead.
streams: make(map[uint32]*clientStream),
singleUse: singleUse,
seenSettingsChan: make(chan struct{}),
wantSettingsAck: true,
readIdleTimeout: conf.SendPingTimeout,
pingTimeout: conf.PingTimeout,
@ -1466,6 +1479,8 @@ func (cs *clientStream) doRequest(req *http.Request, streamf func(*clientStream)
cs.cleanupWriteRequest(err)
}
var errExtendedConnectNotSupported = errors.New("net/http: extended connect not supported by peer")
// writeRequest sends a request.
//
// It returns nil after the request is written, the response read,
@ -1481,12 +1496,31 @@ func (cs *clientStream) writeRequest(req *http.Request, streamf func(*clientStre
return err
}
// wait for setting frames to be received, a server can change this value later,
// but we just wait for the first settings frame
var isExtendedConnect bool
if req.Method == "CONNECT" && req.Header.Get(":protocol") != "" {
isExtendedConnect = true
}
// Acquire the new-request lock by writing to reqHeaderMu.
// This lock guards the critical section covering allocating a new stream ID
// (requires mu) and creating the stream (requires wmu).
if cc.reqHeaderMu == nil {
panic("RoundTrip on uninitialized ClientConn") // for tests
}
if isExtendedConnect {
select {
case <-cs.reqCancel:
return errRequestCanceled
case <-ctx.Done():
return ctx.Err()
case <-cc.seenSettingsChan:
if !cc.extendedConnectAllowed {
return errExtendedConnectNotSupported
}
}
}
select {
case cc.reqHeaderMu <- struct{}{}:
case <-cs.reqCancel:
@ -1714,10 +1748,14 @@ func (cs *clientStream) cleanupWriteRequest(err error) {
ping := false
if !closeOnIdle {
cc.mu.Lock()
if cc.pendingResets == 0 {
ping = true
// rstStreamPingsBlocked works around a gRPC behavior:
// see comment on the field for details.
if !cc.rstStreamPingsBlocked {
if cc.pendingResets == 0 {
ping = true
}
cc.pendingResets++
}
cc.pendingResets++
cc.mu.Unlock()
}
cc.writeStreamReset(cs.ID, ErrCodeCancel, ping, err)
@ -2030,7 +2068,7 @@ func (cs *clientStream) awaitFlowControl(maxBytes int) (taken int32, err error)
func validateHeaders(hdrs http.Header) string {
for k, vv := range hdrs {
if !httpguts.ValidHeaderFieldName(k) {
if !httpguts.ValidHeaderFieldName(k) && k != ":protocol" {
return fmt.Sprintf("name %q", k)
}
for _, v := range vv {
@ -2046,6 +2084,10 @@ func validateHeaders(hdrs http.Header) string {
var errNilRequestURL = errors.New("http2: Request.URI is nil")
func isNormalConnect(req *http.Request) bool {
return req.Method == "CONNECT" && req.Header.Get(":protocol") == ""
}
// requires cc.wmu be held.
func (cc *ClientConn) encodeHeaders(req *http.Request, addGzipHeader bool, trailers string, contentLength int64) ([]byte, error) {
cc.hbuf.Reset()
@ -2066,7 +2108,7 @@ func (cc *ClientConn) encodeHeaders(req *http.Request, addGzipHeader bool, trail
}
var path string
if req.Method != "CONNECT" {
if !isNormalConnect(req) {
path = req.URL.RequestURI()
if !validPseudoPath(path) {
orig := path
@ -2103,7 +2145,7 @@ func (cc *ClientConn) encodeHeaders(req *http.Request, addGzipHeader bool, trail
m = http.MethodGet
}
f(":method", m)
if req.Method != "CONNECT" {
if !isNormalConnect(req) {
f(":path", path)
f(":scheme", req.URL.Scheme)
}
@ -2461,7 +2503,7 @@ func (rl *clientConnReadLoop) run() error {
cc.vlogf("http2: Transport readFrame error on conn %p: (%T) %v", cc, err, err)
}
if se, ok := err.(StreamError); ok {
if cs := rl.streamByID(se.StreamID); cs != nil {
if cs := rl.streamByID(se.StreamID, notHeaderOrDataFrame); cs != nil {
if se.Cause == nil {
se.Cause = cc.fr.errDetail
}
@ -2507,13 +2549,16 @@ func (rl *clientConnReadLoop) run() error {
if VerboseLogs {
cc.vlogf("http2: Transport conn %p received error from processing frame %v: %v", cc, summarizeFrame(f), err)
}
if !cc.seenSettings {
close(cc.seenSettingsChan)
}
return err
}
}
}
func (rl *clientConnReadLoop) processHeaders(f *MetaHeadersFrame) error {
cs := rl.streamByID(f.StreamID)
cs := rl.streamByID(f.StreamID, headerOrDataFrame)
if cs == nil {
// We'd get here if we canceled a request while the
// server had its response still in flight. So if this
@ -2842,7 +2887,7 @@ func (b transportResponseBody) Close() error {
func (rl *clientConnReadLoop) processData(f *DataFrame) error {
cc := rl.cc
cs := rl.streamByID(f.StreamID)
cs := rl.streamByID(f.StreamID, headerOrDataFrame)
data := f.Data()
if cs == nil {
cc.mu.Lock()
@ -2977,9 +3022,22 @@ func (rl *clientConnReadLoop) endStreamError(cs *clientStream, err error) {
cs.abortStream(err)
}
func (rl *clientConnReadLoop) streamByID(id uint32) *clientStream {
// Constants passed to streamByID for documentation purposes.
const (
headerOrDataFrame = true
notHeaderOrDataFrame = false
)
// streamByID returns the stream with the given id, or nil if no stream has that id.
// If headerOrData is true, it clears rst.StreamPingsBlocked.
func (rl *clientConnReadLoop) streamByID(id uint32, headerOrData bool) *clientStream {
rl.cc.mu.Lock()
defer rl.cc.mu.Unlock()
if headerOrData {
// Work around an unfortunate gRPC behavior.
// See comment on ClientConn.rstStreamPingsBlocked for details.
rl.cc.rstStreamPingsBlocked = false
}
cs := rl.cc.streams[id]
if cs != nil && !cs.readAborted {
return cs
@ -3073,6 +3131,21 @@ func (rl *clientConnReadLoop) processSettingsNoWrite(f *SettingsFrame) error {
case SettingHeaderTableSize:
cc.henc.SetMaxDynamicTableSize(s.Val)
cc.peerMaxHeaderTableSize = s.Val
case SettingEnableConnectProtocol:
if err := s.Valid(); err != nil {
return err
}
// If the peer wants to send us SETTINGS_ENABLE_CONNECT_PROTOCOL,
// we require that it do so in the first SETTINGS frame.
//
// When we attempt to use extended CONNECT, we wait for the first
// SETTINGS frame to see if the server supports it. If we let the
// server enable the feature with a later SETTINGS frame, then
// users will see inconsistent results depending on whether we've
// seen that frame or not.
if !cc.seenSettings {
cc.extendedConnectAllowed = s.Val == 1
}
default:
cc.vlogf("Unhandled Setting: %v", s)
}
@ -3090,6 +3163,7 @@ func (rl *clientConnReadLoop) processSettingsNoWrite(f *SettingsFrame) error {
// connection can establish to our default.
cc.maxConcurrentStreams = defaultMaxConcurrentStreams
}
close(cc.seenSettingsChan)
cc.seenSettings = true
}
@ -3098,7 +3172,7 @@ func (rl *clientConnReadLoop) processSettingsNoWrite(f *SettingsFrame) error {
func (rl *clientConnReadLoop) processWindowUpdate(f *WindowUpdateFrame) error {
cc := rl.cc
cs := rl.streamByID(f.StreamID)
cs := rl.streamByID(f.StreamID, notHeaderOrDataFrame)
if f.StreamID != 0 && cs == nil {
return nil
}
@ -3127,7 +3201,7 @@ func (rl *clientConnReadLoop) processWindowUpdate(f *WindowUpdateFrame) error {
}
func (rl *clientConnReadLoop) processResetStream(f *RSTStreamFrame) error {
cs := rl.streamByID(f.StreamID)
cs := rl.streamByID(f.StreamID, notHeaderOrDataFrame)
if cs == nil {
// TODO: return error if server tries to RST_STREAM an idle stream
return nil
@ -3205,6 +3279,7 @@ func (rl *clientConnReadLoop) processPing(f *PingFrame) error {
if cc.pendingResets > 0 {
// See clientStream.cleanupWriteRequest.
cc.pendingResets = 0
cc.rstStreamPingsBlocked = true
cc.cond.Broadcast()
}
return nil

View File

@ -321,6 +321,9 @@ const (
AUDIT_INTEGRITY_STATUS = 0x70a
AUDIT_IPC = 0x517
AUDIT_IPC_SET_PERM = 0x51f
AUDIT_IPE_ACCESS = 0x58c
AUDIT_IPE_CONFIG_CHANGE = 0x58d
AUDIT_IPE_POLICY_LOAD = 0x58e
AUDIT_KERNEL = 0x7d0
AUDIT_KERNEL_OTHER = 0x524
AUDIT_KERN_MODULE = 0x532
@ -489,6 +492,7 @@ const (
BPF_F_ID = 0x20
BPF_F_NETFILTER_IP_DEFRAG = 0x1
BPF_F_QUERY_EFFECTIVE = 0x1
BPF_F_REDIRECT_FLAGS = 0x19
BPF_F_REPLACE = 0x4
BPF_F_SLEEPABLE = 0x10
BPF_F_STRICT_ALIGNMENT = 0x1
@ -1166,6 +1170,7 @@ const (
EXTA = 0xe
EXTB = 0xf
F2FS_SUPER_MAGIC = 0xf2f52010
FALLOC_FL_ALLOCATE_RANGE = 0x0
FALLOC_FL_COLLAPSE_RANGE = 0x8
FALLOC_FL_INSERT_RANGE = 0x20
FALLOC_FL_KEEP_SIZE = 0x1
@ -1799,6 +1804,8 @@ const (
LANDLOCK_ACCESS_NET_BIND_TCP = 0x1
LANDLOCK_ACCESS_NET_CONNECT_TCP = 0x2
LANDLOCK_CREATE_RULESET_VERSION = 0x1
LANDLOCK_SCOPE_ABSTRACT_UNIX_SOCKET = 0x1
LANDLOCK_SCOPE_SIGNAL = 0x2
LINUX_REBOOT_CMD_CAD_OFF = 0x0
LINUX_REBOOT_CMD_CAD_ON = 0x89abcdef
LINUX_REBOOT_CMD_HALT = 0xcdef0123
@ -1924,6 +1931,7 @@ const (
MNT_FORCE = 0x1
MNT_ID_REQ_SIZE_VER0 = 0x18
MNT_ID_REQ_SIZE_VER1 = 0x20
MNT_NS_INFO_SIZE_VER0 = 0x10
MODULE_INIT_COMPRESSED_FILE = 0x4
MODULE_INIT_IGNORE_MODVERSIONS = 0x1
MODULE_INIT_IGNORE_VERMAGIC = 0x2
@ -2970,6 +2978,7 @@ const (
RWF_WRITE_LIFE_NOT_SET = 0x0
SCHED_BATCH = 0x3
SCHED_DEADLINE = 0x6
SCHED_EXT = 0x7
SCHED_FIFO = 0x1
SCHED_FLAG_ALL = 0x7f
SCHED_FLAG_DL_OVERRUN = 0x4

View File

@ -109,6 +109,7 @@ const (
HIDIOCGRAWINFO = 0x80084803
HIDIOCGRDESC = 0x90044802
HIDIOCGRDESCSIZE = 0x80044801
HIDIOCREVOKE = 0x4004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -297,6 +298,8 @@ const (
RTC_WIE_ON = 0x700f
RTC_WKALM_RD = 0x80287010
RTC_WKALM_SET = 0x4028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -335,6 +338,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -109,6 +109,7 @@ const (
HIDIOCGRAWINFO = 0x80084803
HIDIOCGRDESC = 0x90044802
HIDIOCGRDESCSIZE = 0x80044801
HIDIOCREVOKE = 0x4004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -298,6 +299,8 @@ const (
RTC_WIE_ON = 0x700f
RTC_WKALM_RD = 0x80287010
RTC_WKALM_SET = 0x4028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -336,6 +339,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x80084803
HIDIOCGRDESC = 0x90044802
HIDIOCGRDESCSIZE = 0x80044801
HIDIOCREVOKE = 0x4004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -303,6 +304,8 @@ const (
RTC_WIE_ON = 0x700f
RTC_WKALM_RD = 0x80287010
RTC_WKALM_SET = 0x4028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -341,6 +344,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -112,6 +112,7 @@ const (
HIDIOCGRAWINFO = 0x80084803
HIDIOCGRDESC = 0x90044802
HIDIOCGRDESCSIZE = 0x80044801
HIDIOCREVOKE = 0x4004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -205,6 +206,7 @@ const (
PERF_EVENT_IOC_SET_BPF = 0x40042408
PERF_EVENT_IOC_SET_FILTER = 0x40082406
PERF_EVENT_IOC_SET_OUTPUT = 0x2405
POE_MAGIC = 0x504f4530
PPPIOCATTACH = 0x4004743d
PPPIOCATTCHAN = 0x40047438
PPPIOCBRIDGECHAN = 0x40047435
@ -294,6 +296,8 @@ const (
RTC_WIE_ON = 0x700f
RTC_WKALM_RD = 0x80287010
RTC_WKALM_SET = 0x4028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -332,6 +336,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -109,6 +109,7 @@ const (
HIDIOCGRAWINFO = 0x80084803
HIDIOCGRDESC = 0x90044802
HIDIOCGRDESCSIZE = 0x80044801
HIDIOCREVOKE = 0x4004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -290,6 +291,8 @@ const (
RTC_WIE_ON = 0x700f
RTC_WKALM_RD = 0x80287010
RTC_WKALM_SET = 0x4028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -328,6 +331,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x100
@ -296,6 +297,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -334,6 +337,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x1029
SO_DONTROUTE = 0x10
SO_ERROR = 0x1007

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x100
@ -296,6 +297,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -334,6 +337,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x1029
SO_DONTROUTE = 0x10
SO_ERROR = 0x1007

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x100
@ -296,6 +297,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -334,6 +337,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x1029
SO_DONTROUTE = 0x10
SO_ERROR = 0x1007

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x100
@ -296,6 +297,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -334,6 +337,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x1029
SO_DONTROUTE = 0x10
SO_ERROR = 0x1007

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x4000
ICANON = 0x100
IEXTEN = 0x400
@ -351,6 +352,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -389,6 +392,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x4000
ICANON = 0x100
IEXTEN = 0x400
@ -355,6 +356,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -393,6 +396,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x4000
ICANON = 0x100
IEXTEN = 0x400
@ -355,6 +356,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -393,6 +396,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x80084803
HIDIOCGRDESC = 0x90044802
HIDIOCGRDESCSIZE = 0x80044801
HIDIOCREVOKE = 0x4004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -287,6 +288,8 @@ const (
RTC_WIE_ON = 0x700f
RTC_WKALM_RD = 0x80287010
RTC_WKALM_SET = 0x4028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -325,6 +328,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -108,6 +108,7 @@ const (
HIDIOCGRAWINFO = 0x80084803
HIDIOCGRDESC = 0x90044802
HIDIOCGRDESCSIZE = 0x80044801
HIDIOCREVOKE = 0x4004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -359,6 +360,8 @@ const (
RTC_WIE_ON = 0x700f
RTC_WKALM_RD = 0x80287010
RTC_WKALM_SET = 0x4028700f
SCM_DEVMEM_DMABUF = 0x4f
SCM_DEVMEM_LINEAR = 0x4e
SCM_TIMESTAMPING = 0x25
SCM_TIMESTAMPING_OPT_STATS = 0x36
SCM_TIMESTAMPING_PKTINFO = 0x3a
@ -397,6 +400,9 @@ const (
SO_CNX_ADVICE = 0x35
SO_COOKIE = 0x39
SO_DETACH_REUSEPORT_BPF = 0x44
SO_DEVMEM_DMABUF = 0x4f
SO_DEVMEM_DONTNEED = 0x50
SO_DEVMEM_LINEAR = 0x4e
SO_DOMAIN = 0x27
SO_DONTROUTE = 0x5
SO_ERROR = 0x4

View File

@ -112,6 +112,7 @@ const (
HIDIOCGRAWINFO = 0x40084803
HIDIOCGRDESC = 0x50044802
HIDIOCGRDESCSIZE = 0x40044801
HIDIOCREVOKE = 0x8004480d
HUPCL = 0x400
ICANON = 0x2
IEXTEN = 0x8000
@ -350,6 +351,8 @@ const (
RTC_WIE_ON = 0x2000700f
RTC_WKALM_RD = 0x40287010
RTC_WKALM_SET = 0x8028700f
SCM_DEVMEM_DMABUF = 0x58
SCM_DEVMEM_LINEAR = 0x57
SCM_TIMESTAMPING = 0x23
SCM_TIMESTAMPING_OPT_STATS = 0x38
SCM_TIMESTAMPING_PKTINFO = 0x3c
@ -436,6 +439,9 @@ const (
SO_CNX_ADVICE = 0x37
SO_COOKIE = 0x3b
SO_DETACH_REUSEPORT_BPF = 0x47
SO_DEVMEM_DMABUF = 0x58
SO_DEVMEM_DONTNEED = 0x59
SO_DEVMEM_LINEAR = 0x57
SO_DOMAIN = 0x1029
SO_DONTROUTE = 0x10
SO_ERROR = 0x1007

View File

@ -462,11 +462,14 @@ type FdSet struct {
const (
SizeofIfMsghdr = 0x70
SizeofIfMsghdr2 = 0xa0
SizeofIfData = 0x60
SizeofIfData64 = 0x80
SizeofIfaMsghdr = 0x14
SizeofIfmaMsghdr = 0x10
SizeofIfmaMsghdr2 = 0x14
SizeofRtMsghdr = 0x5c
SizeofRtMsghdr2 = 0x5c
SizeofRtMetrics = 0x38
)
@ -480,6 +483,20 @@ type IfMsghdr struct {
Data IfData
}
type IfMsghdr2 struct {
Msglen uint16
Version uint8
Type uint8
Addrs int32
Flags int32
Index uint16
Snd_len int32
Snd_maxlen int32
Snd_drops int32
Timer int32
Data IfData64
}
type IfData struct {
Type uint8
Typelen uint8
@ -512,6 +529,34 @@ type IfData struct {
Reserved2 uint32
}
type IfData64 struct {
Type uint8
Typelen uint8
Physical uint8
Addrlen uint8
Hdrlen uint8
Recvquota uint8
Xmitquota uint8
Unused1 uint8
Mtu uint32
Metric uint32
Baudrate uint64
Ipackets uint64
Ierrors uint64
Opackets uint64
Oerrors uint64
Collisions uint64
Ibytes uint64
Obytes uint64
Imcasts uint64
Omcasts uint64
Iqdrops uint64
Noproto uint64
Recvtiming uint32
Xmittiming uint32
Lastchange Timeval32
}
type IfaMsghdr struct {
Msglen uint16
Version uint8
@ -557,6 +602,21 @@ type RtMsghdr struct {
Rmx RtMetrics
}
type RtMsghdr2 struct {
Msglen uint16
Version uint8
Type uint8
Index uint16
Flags int32
Addrs int32
Refcnt int32
Parentflags int32
Reserved int32
Use int32
Inits uint32
Rmx RtMetrics
}
type RtMetrics struct {
Locks uint32
Mtu uint32

View File

@ -462,11 +462,14 @@ type FdSet struct {
const (
SizeofIfMsghdr = 0x70
SizeofIfMsghdr2 = 0xa0
SizeofIfData = 0x60
SizeofIfData64 = 0x80
SizeofIfaMsghdr = 0x14
SizeofIfmaMsghdr = 0x10
SizeofIfmaMsghdr2 = 0x14
SizeofRtMsghdr = 0x5c
SizeofRtMsghdr2 = 0x5c
SizeofRtMetrics = 0x38
)
@ -480,6 +483,20 @@ type IfMsghdr struct {
Data IfData
}
type IfMsghdr2 struct {
Msglen uint16
Version uint8
Type uint8
Addrs int32
Flags int32
Index uint16
Snd_len int32
Snd_maxlen int32
Snd_drops int32
Timer int32
Data IfData64
}
type IfData struct {
Type uint8
Typelen uint8
@ -512,6 +529,34 @@ type IfData struct {
Reserved2 uint32
}
type IfData64 struct {
Type uint8
Typelen uint8
Physical uint8
Addrlen uint8
Hdrlen uint8
Recvquota uint8
Xmitquota uint8
Unused1 uint8
Mtu uint32
Metric uint32
Baudrate uint64
Ipackets uint64
Ierrors uint64
Opackets uint64
Oerrors uint64
Collisions uint64
Ibytes uint64
Obytes uint64
Imcasts uint64
Omcasts uint64
Iqdrops uint64
Noproto uint64
Recvtiming uint32
Xmittiming uint32
Lastchange Timeval32
}
type IfaMsghdr struct {
Msglen uint16
Version uint8
@ -557,6 +602,21 @@ type RtMsghdr struct {
Rmx RtMetrics
}
type RtMsghdr2 struct {
Msglen uint16
Version uint8
Type uint8
Index uint16
Flags int32
Addrs int32
Refcnt int32
Parentflags int32
Reserved int32
Use int32
Inits uint32
Rmx RtMetrics
}
type RtMetrics struct {
Locks uint32
Mtu uint32

View File

@ -2594,8 +2594,8 @@ const (
SOF_TIMESTAMPING_BIND_PHC = 0x8000
SOF_TIMESTAMPING_OPT_ID_TCP = 0x10000
SOF_TIMESTAMPING_LAST = 0x10000
SOF_TIMESTAMPING_MASK = 0x1ffff
SOF_TIMESTAMPING_LAST = 0x20000
SOF_TIMESTAMPING_MASK = 0x3ffff
SCM_TSTAMP_SND = 0x0
SCM_TSTAMP_SCHED = 0x1
@ -3541,7 +3541,7 @@ type Nhmsg struct {
type NexthopGrp struct {
Id uint32
Weight uint8
Resvd1 uint8
High uint8
Resvd2 uint16
}
@ -3802,7 +3802,7 @@ const (
ETHTOOL_MSG_PSE_GET = 0x24
ETHTOOL_MSG_PSE_SET = 0x25
ETHTOOL_MSG_RSS_GET = 0x26
ETHTOOL_MSG_USER_MAX = 0x2c
ETHTOOL_MSG_USER_MAX = 0x2d
ETHTOOL_MSG_KERNEL_NONE = 0x0
ETHTOOL_MSG_STRSET_GET_REPLY = 0x1
ETHTOOL_MSG_LINKINFO_GET_REPLY = 0x2
@ -3842,7 +3842,7 @@ const (
ETHTOOL_MSG_MODULE_NTF = 0x24
ETHTOOL_MSG_PSE_GET_REPLY = 0x25
ETHTOOL_MSG_RSS_GET_REPLY = 0x26
ETHTOOL_MSG_KERNEL_MAX = 0x2c
ETHTOOL_MSG_KERNEL_MAX = 0x2e
ETHTOOL_FLAG_COMPACT_BITSETS = 0x1
ETHTOOL_FLAG_OMIT_REPLY = 0x2
ETHTOOL_FLAG_STATS = 0x4
@ -3850,7 +3850,7 @@ const (
ETHTOOL_A_HEADER_DEV_INDEX = 0x1
ETHTOOL_A_HEADER_DEV_NAME = 0x2
ETHTOOL_A_HEADER_FLAGS = 0x3
ETHTOOL_A_HEADER_MAX = 0x3
ETHTOOL_A_HEADER_MAX = 0x4
ETHTOOL_A_BITSET_BIT_UNSPEC = 0x0
ETHTOOL_A_BITSET_BIT_INDEX = 0x1
ETHTOOL_A_BITSET_BIT_NAME = 0x2
@ -4031,11 +4031,11 @@ const (
ETHTOOL_A_CABLE_RESULT_UNSPEC = 0x0
ETHTOOL_A_CABLE_RESULT_PAIR = 0x1
ETHTOOL_A_CABLE_RESULT_CODE = 0x2
ETHTOOL_A_CABLE_RESULT_MAX = 0x2
ETHTOOL_A_CABLE_RESULT_MAX = 0x3
ETHTOOL_A_CABLE_FAULT_LENGTH_UNSPEC = 0x0
ETHTOOL_A_CABLE_FAULT_LENGTH_PAIR = 0x1
ETHTOOL_A_CABLE_FAULT_LENGTH_CM = 0x2
ETHTOOL_A_CABLE_FAULT_LENGTH_MAX = 0x2
ETHTOOL_A_CABLE_FAULT_LENGTH_MAX = 0x3
ETHTOOL_A_CABLE_TEST_NTF_STATUS_UNSPEC = 0x0
ETHTOOL_A_CABLE_TEST_NTF_STATUS_STARTED = 0x1
ETHTOOL_A_CABLE_TEST_NTF_STATUS_COMPLETED = 0x2
@ -4200,7 +4200,8 @@ type (
}
PtpSysOffsetExtended struct {
Samples uint32
Rsv [3]uint32
Clockid int32
Rsv [2]uint32
Ts [25][3]PtpClockTime
}
PtpSysOffsetPrecise struct {
@ -4399,6 +4400,7 @@ const (
type LandlockRulesetAttr struct {
Access_fs uint64
Access_net uint64
Scoped uint64
}
type LandlockPathBeneathAttr struct {

View File

@ -168,6 +168,8 @@ func NewCallbackCDecl(fn interface{}) uintptr {
//sys CreateNamedPipe(name *uint16, flags uint32, pipeMode uint32, maxInstances uint32, outSize uint32, inSize uint32, defaultTimeout uint32, sa *SecurityAttributes) (handle Handle, err error) [failretval==InvalidHandle] = CreateNamedPipeW
//sys ConnectNamedPipe(pipe Handle, overlapped *Overlapped) (err error)
//sys DisconnectNamedPipe(pipe Handle) (err error)
//sys GetNamedPipeClientProcessId(pipe Handle, clientProcessID *uint32) (err error)
//sys GetNamedPipeServerProcessId(pipe Handle, serverProcessID *uint32) (err error)
//sys GetNamedPipeInfo(pipe Handle, flags *uint32, outSize *uint32, inSize *uint32, maxInstances *uint32) (err error)
//sys GetNamedPipeHandleState(pipe Handle, state *uint32, curInstances *uint32, maxCollectionCount *uint32, collectDataTimeout *uint32, userName *uint16, maxUserNameSize uint32) (err error) = GetNamedPipeHandleStateW
//sys SetNamedPipeHandleState(pipe Handle, state *uint32, maxCollectionCount *uint32, collectDataTimeout *uint32) (err error) = SetNamedPipeHandleState

View File

@ -176,6 +176,7 @@ const (
WAIT_FAILED = 0xFFFFFFFF
// Access rights for process.
PROCESS_ALL_ACCESS = 0xFFFF
PROCESS_CREATE_PROCESS = 0x0080
PROCESS_CREATE_THREAD = 0x0002
PROCESS_DUP_HANDLE = 0x0040

View File

@ -280,8 +280,10 @@ var (
procGetMaximumProcessorCount = modkernel32.NewProc("GetMaximumProcessorCount")
procGetModuleFileNameW = modkernel32.NewProc("GetModuleFileNameW")
procGetModuleHandleExW = modkernel32.NewProc("GetModuleHandleExW")
procGetNamedPipeClientProcessId = modkernel32.NewProc("GetNamedPipeClientProcessId")
procGetNamedPipeHandleStateW = modkernel32.NewProc("GetNamedPipeHandleStateW")
procGetNamedPipeInfo = modkernel32.NewProc("GetNamedPipeInfo")
procGetNamedPipeServerProcessId = modkernel32.NewProc("GetNamedPipeServerProcessId")
procGetOverlappedResult = modkernel32.NewProc("GetOverlappedResult")
procGetPriorityClass = modkernel32.NewProc("GetPriorityClass")
procGetProcAddress = modkernel32.NewProc("GetProcAddress")
@ -1612,7 +1614,7 @@ func DwmSetWindowAttribute(hwnd HWND, attribute uint32, value unsafe.Pointer, si
}
func CancelMibChangeNotify2(notificationHandle Handle) (errcode error) {
r0, _, _ := syscall.SyscallN(procCancelMibChangeNotify2.Addr(), uintptr(notificationHandle))
r0, _, _ := syscall.Syscall(procCancelMibChangeNotify2.Addr(), 1, uintptr(notificationHandle), 0, 0)
if r0 != 0 {
errcode = syscall.Errno(r0)
}
@ -1652,7 +1654,7 @@ func GetIfEntry(pIfRow *MibIfRow) (errcode error) {
}
func GetIfEntry2Ex(level uint32, row *MibIfRow2) (errcode error) {
r0, _, _ := syscall.SyscallN(procGetIfEntry2Ex.Addr(), uintptr(level), uintptr(unsafe.Pointer(row)))
r0, _, _ := syscall.Syscall(procGetIfEntry2Ex.Addr(), 2, uintptr(level), uintptr(unsafe.Pointer(row)), 0)
if r0 != 0 {
errcode = syscall.Errno(r0)
}
@ -1660,7 +1662,7 @@ func GetIfEntry2Ex(level uint32, row *MibIfRow2) (errcode error) {
}
func GetUnicastIpAddressEntry(row *MibUnicastIpAddressRow) (errcode error) {
r0, _, _ := syscall.SyscallN(procGetUnicastIpAddressEntry.Addr(), uintptr(unsafe.Pointer(row)))
r0, _, _ := syscall.Syscall(procGetUnicastIpAddressEntry.Addr(), 1, uintptr(unsafe.Pointer(row)), 0, 0)
if r0 != 0 {
errcode = syscall.Errno(r0)
}
@ -1672,7 +1674,7 @@ func NotifyIpInterfaceChange(family uint16, callback uintptr, callerContext unsa
if initialNotification {
_p0 = 1
}
r0, _, _ := syscall.SyscallN(procNotifyIpInterfaceChange.Addr(), uintptr(family), uintptr(callback), uintptr(callerContext), uintptr(_p0), uintptr(unsafe.Pointer(notificationHandle)))
r0, _, _ := syscall.Syscall6(procNotifyIpInterfaceChange.Addr(), 5, uintptr(family), uintptr(callback), uintptr(callerContext), uintptr(_p0), uintptr(unsafe.Pointer(notificationHandle)), 0)
if r0 != 0 {
errcode = syscall.Errno(r0)
}
@ -1684,7 +1686,7 @@ func NotifyUnicastIpAddressChange(family uint16, callback uintptr, callerContext
if initialNotification {
_p0 = 1
}
r0, _, _ := syscall.SyscallN(procNotifyUnicastIpAddressChange.Addr(), uintptr(family), uintptr(callback), uintptr(callerContext), uintptr(_p0), uintptr(unsafe.Pointer(notificationHandle)))
r0, _, _ := syscall.Syscall6(procNotifyUnicastIpAddressChange.Addr(), 5, uintptr(family), uintptr(callback), uintptr(callerContext), uintptr(_p0), uintptr(unsafe.Pointer(notificationHandle)), 0)
if r0 != 0 {
errcode = syscall.Errno(r0)
}
@ -2446,6 +2448,14 @@ func GetModuleHandleEx(flags uint32, moduleName *uint16, module *Handle) (err er
return
}
func GetNamedPipeClientProcessId(pipe Handle, clientProcessID *uint32) (err error) {
r1, _, e1 := syscall.Syscall(procGetNamedPipeClientProcessId.Addr(), 2, uintptr(pipe), uintptr(unsafe.Pointer(clientProcessID)), 0)
if r1 == 0 {
err = errnoErr(e1)
}
return
}
func GetNamedPipeHandleState(pipe Handle, state *uint32, curInstances *uint32, maxCollectionCount *uint32, collectDataTimeout *uint32, userName *uint16, maxUserNameSize uint32) (err error) {
r1, _, e1 := syscall.Syscall9(procGetNamedPipeHandleStateW.Addr(), 7, uintptr(pipe), uintptr(unsafe.Pointer(state)), uintptr(unsafe.Pointer(curInstances)), uintptr(unsafe.Pointer(maxCollectionCount)), uintptr(unsafe.Pointer(collectDataTimeout)), uintptr(unsafe.Pointer(userName)), uintptr(maxUserNameSize), 0, 0)
if r1 == 0 {
@ -2462,6 +2472,14 @@ func GetNamedPipeInfo(pipe Handle, flags *uint32, outSize *uint32, inSize *uint3
return
}
func GetNamedPipeServerProcessId(pipe Handle, serverProcessID *uint32) (err error) {
r1, _, e1 := syscall.Syscall(procGetNamedPipeServerProcessId.Addr(), 2, uintptr(pipe), uintptr(unsafe.Pointer(serverProcessID)), 0)
if r1 == 0 {
err = errnoErr(e1)
}
return
}
func GetOverlappedResult(handle Handle, overlapped *Overlapped, done *uint32, wait bool) (err error) {
var _p0 uint32
if wait {