chore: bump deps

This commit is contained in:
2025-08-12 07:04:57 +02:00
committed by decentral1se
parent 157d131b37
commit 56a68dfa91
981 changed files with 36486 additions and 39650 deletions

View File

@ -555,7 +555,7 @@ func (c *client) insertKey(s interface{}, comment string, constraints []byte) er
})
case *dsa.PrivateKey:
req = ssh.Marshal(dsaKeyMsg{
Type: ssh.KeyAlgoDSA,
Type: ssh.InsecureKeyAlgoDSA,
P: k.P,
Q: k.Q,
G: k.G,
@ -803,16 +803,16 @@ var _ ssh.AlgorithmSigner = &agentKeyringSigner{}
//
// This map must be kept in sync with the one in certs.go.
var certKeyAlgoNames = map[string]string{
ssh.CertAlgoRSAv01: ssh.KeyAlgoRSA,
ssh.CertAlgoRSASHA256v01: ssh.KeyAlgoRSASHA256,
ssh.CertAlgoRSASHA512v01: ssh.KeyAlgoRSASHA512,
ssh.CertAlgoDSAv01: ssh.KeyAlgoDSA,
ssh.CertAlgoECDSA256v01: ssh.KeyAlgoECDSA256,
ssh.CertAlgoECDSA384v01: ssh.KeyAlgoECDSA384,
ssh.CertAlgoECDSA521v01: ssh.KeyAlgoECDSA521,
ssh.CertAlgoSKECDSA256v01: ssh.KeyAlgoSKECDSA256,
ssh.CertAlgoED25519v01: ssh.KeyAlgoED25519,
ssh.CertAlgoSKED25519v01: ssh.KeyAlgoSKED25519,
ssh.CertAlgoRSAv01: ssh.KeyAlgoRSA,
ssh.CertAlgoRSASHA256v01: ssh.KeyAlgoRSASHA256,
ssh.CertAlgoRSASHA512v01: ssh.KeyAlgoRSASHA512,
ssh.InsecureCertAlgoDSAv01: ssh.InsecureKeyAlgoDSA,
ssh.CertAlgoECDSA256v01: ssh.KeyAlgoECDSA256,
ssh.CertAlgoECDSA384v01: ssh.KeyAlgoECDSA384,
ssh.CertAlgoECDSA521v01: ssh.KeyAlgoECDSA521,
ssh.CertAlgoSKECDSA256v01: ssh.KeyAlgoSKECDSA256,
ssh.CertAlgoED25519v01: ssh.KeyAlgoED25519,
ssh.CertAlgoSKED25519v01: ssh.KeyAlgoSKED25519,
}
// underlyingAlgo returns the signature algorithm associated with algo (which is

View File

@ -506,7 +506,7 @@ func (s *server) insertIdentity(req []byte) error {
switch record.Type {
case ssh.KeyAlgoRSA:
addedKey, err = parseRSAKey(req)
case ssh.KeyAlgoDSA:
case ssh.InsecureKeyAlgoDSA:
addedKey, err = parseDSAKey(req)
case ssh.KeyAlgoECDSA256, ssh.KeyAlgoECDSA384, ssh.KeyAlgoECDSA521:
addedKey, err = parseECDSAKey(req)
@ -514,7 +514,7 @@ func (s *server) insertIdentity(req []byte) error {
addedKey, err = parseEd25519Key(req)
case ssh.CertAlgoRSAv01:
addedKey, err = parseRSACert(req)
case ssh.CertAlgoDSAv01:
case ssh.InsecureCertAlgoDSAv01:
addedKey, err = parseDSACert(req)
case ssh.CertAlgoECDSA256v01, ssh.CertAlgoECDSA384v01, ssh.CertAlgoECDSA521v01:
addedKey, err = parseECDSACert(req)

View File

@ -20,14 +20,19 @@ import (
// returned by MultiAlgorithmSigner and don't appear in the Signature.Format
// field.
const (
CertAlgoRSAv01 = "ssh-rsa-cert-v01@openssh.com"
CertAlgoDSAv01 = "ssh-dss-cert-v01@openssh.com"
CertAlgoECDSA256v01 = "ecdsa-sha2-nistp256-cert-v01@openssh.com"
CertAlgoECDSA384v01 = "ecdsa-sha2-nistp384-cert-v01@openssh.com"
CertAlgoECDSA521v01 = "ecdsa-sha2-nistp521-cert-v01@openssh.com"
CertAlgoSKECDSA256v01 = "sk-ecdsa-sha2-nistp256-cert-v01@openssh.com"
CertAlgoED25519v01 = "ssh-ed25519-cert-v01@openssh.com"
CertAlgoSKED25519v01 = "sk-ssh-ed25519-cert-v01@openssh.com"
CertAlgoRSAv01 = "ssh-rsa-cert-v01@openssh.com"
// Deprecated: DSA is only supported at insecure key sizes, and was removed
// from major implementations.
CertAlgoDSAv01 = InsecureCertAlgoDSAv01
// Deprecated: DSA is only supported at insecure key sizes, and was removed
// from major implementations.
InsecureCertAlgoDSAv01 = "ssh-dss-cert-v01@openssh.com"
CertAlgoECDSA256v01 = "ecdsa-sha2-nistp256-cert-v01@openssh.com"
CertAlgoECDSA384v01 = "ecdsa-sha2-nistp384-cert-v01@openssh.com"
CertAlgoECDSA521v01 = "ecdsa-sha2-nistp521-cert-v01@openssh.com"
CertAlgoSKECDSA256v01 = "sk-ecdsa-sha2-nistp256-cert-v01@openssh.com"
CertAlgoED25519v01 = "ssh-ed25519-cert-v01@openssh.com"
CertAlgoSKED25519v01 = "sk-ssh-ed25519-cert-v01@openssh.com"
// CertAlgoRSASHA256v01 and CertAlgoRSASHA512v01 can't appear as a
// Certificate.Type (or PublicKey.Type), but only in
@ -228,7 +233,11 @@ func parseCert(in []byte, privAlgo string) (*Certificate, error) {
if err != nil {
return nil, err
}
// The Type() function is intended to return only certificate key types, but
// we use certKeyAlgoNames anyway for safety, to match [Certificate.Type].
if _, ok := certKeyAlgoNames[k.Type()]; ok {
return nil, fmt.Errorf("ssh: the signature key type %q is invalid for certificates", k.Type())
}
c.SignatureKey = k
c.Signature, rest, ok = parseSignatureBody(g.Signature)
if !ok || len(rest) > 0 {
@ -296,16 +305,13 @@ type CertChecker struct {
SupportedCriticalOptions []string
// IsUserAuthority should return true if the key is recognized as an
// authority for the given user certificate. This allows for
// certificates to be signed by other certificates. This must be set
// if this CertChecker will be checking user certificates.
// authority for user certificate. This must be set if this CertChecker
// will be checking user certificates.
IsUserAuthority func(auth PublicKey) bool
// IsHostAuthority should report whether the key is recognized as
// an authority for this host. This allows for certificates to be
// signed by other keys, and for those other keys to only be valid
// signers for particular hostnames. This must be set if this
// CertChecker will be checking host certificates.
// an authority for this host. This must be set if this CertChecker
// will be checking host certificates.
IsHostAuthority func(auth PublicKey, address string) bool
// Clock is used for verifying time stamps. If nil, time.Now
@ -442,12 +448,19 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error {
// SignCert signs the certificate with an authority, setting the Nonce,
// SignatureKey, and Signature fields. If the authority implements the
// MultiAlgorithmSigner interface the first algorithm in the list is used. This
// is useful if you want to sign with a specific algorithm.
// is useful if you want to sign with a specific algorithm. As specified in
// [SSH-CERTS], Section 2.1.1, authority can't be a [Certificate].
func (c *Certificate) SignCert(rand io.Reader, authority Signer) error {
c.Nonce = make([]byte, 32)
if _, err := io.ReadFull(rand, c.Nonce); err != nil {
return err
}
// The Type() function is intended to return only certificate key types, but
// we use certKeyAlgoNames anyway for safety, to match [Certificate.Type].
if _, ok := certKeyAlgoNames[authority.PublicKey().Type()]; ok {
return fmt.Errorf("ssh: certificates cannot be used as authority (public key type %q)",
authority.PublicKey().Type())
}
c.SignatureKey = authority.PublicKey()
if v, ok := authority.(MultiAlgorithmSigner); ok {
@ -485,16 +498,16 @@ func (c *Certificate) SignCert(rand io.Reader, authority Signer) error {
//
// This map must be kept in sync with the one in agent/client.go.
var certKeyAlgoNames = map[string]string{
CertAlgoRSAv01: KeyAlgoRSA,
CertAlgoRSASHA256v01: KeyAlgoRSASHA256,
CertAlgoRSASHA512v01: KeyAlgoRSASHA512,
CertAlgoDSAv01: KeyAlgoDSA,
CertAlgoECDSA256v01: KeyAlgoECDSA256,
CertAlgoECDSA384v01: KeyAlgoECDSA384,
CertAlgoECDSA521v01: KeyAlgoECDSA521,
CertAlgoSKECDSA256v01: KeyAlgoSKECDSA256,
CertAlgoED25519v01: KeyAlgoED25519,
CertAlgoSKED25519v01: KeyAlgoSKED25519,
CertAlgoRSAv01: KeyAlgoRSA,
CertAlgoRSASHA256v01: KeyAlgoRSASHA256,
CertAlgoRSASHA512v01: KeyAlgoRSASHA512,
InsecureCertAlgoDSAv01: InsecureKeyAlgoDSA,
CertAlgoECDSA256v01: KeyAlgoECDSA256,
CertAlgoECDSA384v01: KeyAlgoECDSA384,
CertAlgoECDSA521v01: KeyAlgoECDSA521,
CertAlgoSKECDSA256v01: KeyAlgoSKECDSA256,
CertAlgoED25519v01: KeyAlgoED25519,
CertAlgoSKED25519v01: KeyAlgoSKED25519,
}
// underlyingAlgo returns the signature algorithm associated with algo (which is

View File

@ -58,11 +58,11 @@ func newRC4(key, iv []byte) (cipher.Stream, error) {
type cipherMode struct {
keySize int
ivSize int
create func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error)
create func(key, iv []byte, macKey []byte, algs DirectionAlgorithms) (packetCipher, error)
}
func streamCipherMode(skip int, createFunc func(key, iv []byte) (cipher.Stream, error)) func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
return func(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
func streamCipherMode(skip int, createFunc func(key, iv []byte) (cipher.Stream, error)) func(key, iv []byte, macKey []byte, algs DirectionAlgorithms) (packetCipher, error) {
return func(key, iv, macKey []byte, algs DirectionAlgorithms) (packetCipher, error) {
stream, err := createFunc(key, iv)
if err != nil {
return nil, err
@ -98,36 +98,36 @@ func streamCipherMode(skip int, createFunc func(key, iv []byte) (cipher.Stream,
var cipherModes = map[string]*cipherMode{
// Ciphers from RFC 4344, which introduced many CTR-based ciphers. Algorithms
// are defined in the order specified in the RFC.
"aes128-ctr": {16, aes.BlockSize, streamCipherMode(0, newAESCTR)},
"aes192-ctr": {24, aes.BlockSize, streamCipherMode(0, newAESCTR)},
"aes256-ctr": {32, aes.BlockSize, streamCipherMode(0, newAESCTR)},
CipherAES128CTR: {16, aes.BlockSize, streamCipherMode(0, newAESCTR)},
CipherAES192CTR: {24, aes.BlockSize, streamCipherMode(0, newAESCTR)},
CipherAES256CTR: {32, aes.BlockSize, streamCipherMode(0, newAESCTR)},
// Ciphers from RFC 4345, which introduces security-improved arcfour ciphers.
// They are defined in the order specified in the RFC.
"arcfour128": {16, 0, streamCipherMode(1536, newRC4)},
"arcfour256": {32, 0, streamCipherMode(1536, newRC4)},
InsecureCipherRC4128: {16, 0, streamCipherMode(1536, newRC4)},
InsecureCipherRC4256: {32, 0, streamCipherMode(1536, newRC4)},
// Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol.
// Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and
// RC4) has problems with weak keys, and should be used with caution."
// RFC 4345 introduces improved versions of Arcfour.
"arcfour": {16, 0, streamCipherMode(0, newRC4)},
InsecureCipherRC4: {16, 0, streamCipherMode(0, newRC4)},
// AEAD ciphers
gcm128CipherID: {16, 12, newGCMCipher},
gcm256CipherID: {32, 12, newGCMCipher},
chacha20Poly1305ID: {64, 0, newChaCha20Cipher},
CipherAES128GCM: {16, 12, newGCMCipher},
CipherAES256GCM: {32, 12, newGCMCipher},
CipherChaCha20Poly1305: {64, 0, newChaCha20Cipher},
// CBC mode is insecure and so is not included in the default config.
// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely
// needed, it's possible to specify a custom Config to enable it.
// You should expect that an active attacker can recover plaintext if
// you do.
aes128cbcID: {16, aes.BlockSize, newAESCBCCipher},
InsecureCipherAES128CBC: {16, aes.BlockSize, newAESCBCCipher},
// 3des-cbc is insecure and is not included in the default
// config.
tripledescbcID: {24, des.BlockSize, newTripleDESCBCCipher},
InsecureCipherTripleDESCBC: {24, des.BlockSize, newTripleDESCBCCipher},
}
// prefixLen is the length of the packet prefix that contains the packet length
@ -307,7 +307,7 @@ type gcmCipher struct {
buf []byte
}
func newGCMCipher(key, iv, unusedMacKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
func newGCMCipher(key, iv, unusedMacKey []byte, unusedAlgs DirectionAlgorithms) (packetCipher, error) {
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
@ -429,7 +429,7 @@ type cbcCipher struct {
oracleCamouflage uint32
}
func newCBCCipher(c cipher.Block, key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
func newCBCCipher(c cipher.Block, key, iv, macKey []byte, algs DirectionAlgorithms) (packetCipher, error) {
cbc := &cbcCipher{
mac: macModes[algs.MAC].new(macKey),
decrypter: cipher.NewCBCDecrypter(c, iv),
@ -443,7 +443,7 @@ func newCBCCipher(c cipher.Block, key, iv, macKey []byte, algs directionAlgorith
return cbc, nil
}
func newAESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
func newAESCBCCipher(key, iv, macKey []byte, algs DirectionAlgorithms) (packetCipher, error) {
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
@ -457,7 +457,7 @@ func newAESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCi
return cbc, nil
}
func newTripleDESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
func newTripleDESCBCCipher(key, iv, macKey []byte, algs DirectionAlgorithms) (packetCipher, error) {
c, err := des.NewTripleDESCipher(key)
if err != nil {
return nil, err
@ -635,8 +635,6 @@ func (c *cbcCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader
return nil
}
const chacha20Poly1305ID = "chacha20-poly1305@openssh.com"
// chacha20Poly1305Cipher implements the chacha20-poly1305@openssh.com
// AEAD, which is described here:
//
@ -650,7 +648,7 @@ type chacha20Poly1305Cipher struct {
buf []byte
}
func newChaCha20Cipher(key, unusedIV, unusedMACKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
func newChaCha20Cipher(key, unusedIV, unusedMACKey []byte, unusedAlgs DirectionAlgorithms) (packetCipher, error) {
if len(key) != 64 {
panic(len(key))
}

View File

@ -110,6 +110,7 @@ func (c *connection) clientHandshake(dialAddress string, config *ClientConfig) e
}
c.sessionID = c.transport.getSessionID()
c.algorithms = c.transport.getAlgorithms()
return c.clientAuthenticate(config)
}

View File

@ -289,7 +289,7 @@ func pickSignatureAlgorithm(signer Signer, extensions map[string][]byte) (MultiA
}
}
algo, err := findCommon("public key signature algorithm", keyAlgos, serverAlgos)
algo, err := findCommon("public key signature algorithm", keyAlgos, serverAlgos, true)
if err != nil {
// If there is no overlap, return the fallback algorithm to support
// servers that fail to list all supported algorithms.

View File

@ -10,6 +10,7 @@ import (
"fmt"
"io"
"math"
"slices"
"sync"
_ "crypto/sha1"
@ -24,69 +25,258 @@ const (
serviceSSH = "ssh-connection"
)
// supportedCiphers lists ciphers we support but might not recommend.
var supportedCiphers = []string{
"aes128-ctr", "aes192-ctr", "aes256-ctr",
"aes128-gcm@openssh.com", gcm256CipherID,
chacha20Poly1305ID,
"arcfour256", "arcfour128", "arcfour",
aes128cbcID,
tripledescbcID,
// The ciphers currently or previously implemented by this library, to use in
// [Config.Ciphers]. For a list, see the [Algorithms.Ciphers] returned by
// [SupportedAlgorithms] or [InsecureAlgorithms].
const (
CipherAES128GCM = "aes128-gcm@openssh.com"
CipherAES256GCM = "aes256-gcm@openssh.com"
CipherChaCha20Poly1305 = "chacha20-poly1305@openssh.com"
CipherAES128CTR = "aes128-ctr"
CipherAES192CTR = "aes192-ctr"
CipherAES256CTR = "aes256-ctr"
InsecureCipherAES128CBC = "aes128-cbc"
InsecureCipherTripleDESCBC = "3des-cbc"
InsecureCipherRC4 = "arcfour"
InsecureCipherRC4128 = "arcfour128"
InsecureCipherRC4256 = "arcfour256"
)
// The key exchanges currently or previously implemented by this library, to use
// in [Config.KeyExchanges]. For a list, see the
// [Algorithms.KeyExchanges] returned by [SupportedAlgorithms] or
// [InsecureAlgorithms].
const (
InsecureKeyExchangeDH1SHA1 = "diffie-hellman-group1-sha1"
InsecureKeyExchangeDH14SHA1 = "diffie-hellman-group14-sha1"
KeyExchangeDH14SHA256 = "diffie-hellman-group14-sha256"
KeyExchangeDH16SHA512 = "diffie-hellman-group16-sha512"
KeyExchangeECDHP256 = "ecdh-sha2-nistp256"
KeyExchangeECDHP384 = "ecdh-sha2-nistp384"
KeyExchangeECDHP521 = "ecdh-sha2-nistp521"
KeyExchangeCurve25519 = "curve25519-sha256"
InsecureKeyExchangeDHGEXSHA1 = "diffie-hellman-group-exchange-sha1"
KeyExchangeDHGEXSHA256 = "diffie-hellman-group-exchange-sha256"
// KeyExchangeMLKEM768X25519 is supported from Go 1.24.
KeyExchangeMLKEM768X25519 = "mlkem768x25519-sha256"
// An alias for KeyExchangeCurve25519SHA256. This kex ID will be added if
// KeyExchangeCurve25519SHA256 is requested for backward compatibility with
// OpenSSH versions up to 7.2.
keyExchangeCurve25519LibSSH = "curve25519-sha256@libssh.org"
)
// The message authentication code (MAC) currently or previously implemented by
// this library, to use in [Config.MACs]. For a list, see the
// [Algorithms.MACs] returned by [SupportedAlgorithms] or
// [InsecureAlgorithms].
const (
HMACSHA256ETM = "hmac-sha2-256-etm@openssh.com"
HMACSHA512ETM = "hmac-sha2-512-etm@openssh.com"
HMACSHA256 = "hmac-sha2-256"
HMACSHA512 = "hmac-sha2-512"
HMACSHA1 = "hmac-sha1"
InsecureHMACSHA196 = "hmac-sha1-96"
)
var (
// supportedKexAlgos specifies key-exchange algorithms implemented by this
// package in preference order, excluding those with security issues.
supportedKexAlgos = []string{
KeyExchangeCurve25519,
KeyExchangeECDHP256,
KeyExchangeECDHP384,
KeyExchangeECDHP521,
KeyExchangeDH14SHA256,
KeyExchangeDH16SHA512,
KeyExchangeDHGEXSHA256,
}
// defaultKexAlgos specifies the default preference for key-exchange
// algorithms in preference order.
defaultKexAlgos = []string{
KeyExchangeCurve25519,
KeyExchangeECDHP256,
KeyExchangeECDHP384,
KeyExchangeECDHP521,
KeyExchangeDH14SHA256,
InsecureKeyExchangeDH14SHA1,
}
// insecureKexAlgos specifies key-exchange algorithms implemented by this
// package and which have security issues.
insecureKexAlgos = []string{
InsecureKeyExchangeDH14SHA1,
InsecureKeyExchangeDH1SHA1,
InsecureKeyExchangeDHGEXSHA1,
}
// supportedCiphers specifies cipher algorithms implemented by this package
// in preference order, excluding those with security issues.
supportedCiphers = []string{
CipherAES128GCM,
CipherAES256GCM,
CipherChaCha20Poly1305,
CipherAES128CTR,
CipherAES192CTR,
CipherAES256CTR,
}
// defaultCiphers specifies the default preference for ciphers algorithms
// in preference order.
defaultCiphers = supportedCiphers
// insecureCiphers specifies cipher algorithms implemented by this
// package and which have security issues.
insecureCiphers = []string{
InsecureCipherAES128CBC,
InsecureCipherTripleDESCBC,
InsecureCipherRC4256,
InsecureCipherRC4128,
InsecureCipherRC4,
}
// supportedMACs specifies MAC algorithms implemented by this package in
// preference order, excluding those with security issues.
supportedMACs = []string{
HMACSHA256ETM,
HMACSHA512ETM,
HMACSHA256,
HMACSHA512,
HMACSHA1,
}
// defaultMACs specifies the default preference for MAC algorithms in
// preference order.
defaultMACs = []string{
HMACSHA256ETM,
HMACSHA512ETM,
HMACSHA256,
HMACSHA512,
HMACSHA1,
InsecureHMACSHA196,
}
// insecureMACs specifies MAC algorithms implemented by this
// package and which have security issues.
insecureMACs = []string{
InsecureHMACSHA196,
}
// supportedHostKeyAlgos specifies the supported host-key algorithms (i.e.
// methods of authenticating servers) implemented by this package in
// preference order, excluding those with security issues.
supportedHostKeyAlgos = []string{
CertAlgoRSASHA256v01,
CertAlgoRSASHA512v01,
CertAlgoECDSA256v01,
CertAlgoECDSA384v01,
CertAlgoECDSA521v01,
CertAlgoED25519v01,
KeyAlgoRSASHA256,
KeyAlgoRSASHA512,
KeyAlgoECDSA256,
KeyAlgoECDSA384,
KeyAlgoECDSA521,
KeyAlgoED25519,
}
// defaultHostKeyAlgos specifies the default preference for host-key
// algorithms in preference order.
defaultHostKeyAlgos = []string{
CertAlgoRSASHA256v01,
CertAlgoRSASHA512v01,
CertAlgoRSAv01,
InsecureCertAlgoDSAv01,
CertAlgoECDSA256v01,
CertAlgoECDSA384v01,
CertAlgoECDSA521v01,
CertAlgoED25519v01,
KeyAlgoECDSA256,
KeyAlgoECDSA384,
KeyAlgoECDSA521,
KeyAlgoRSASHA256,
KeyAlgoRSASHA512,
KeyAlgoRSA,
InsecureKeyAlgoDSA,
KeyAlgoED25519,
}
// insecureHostKeyAlgos specifies host-key algorithms implemented by this
// package and which have security issues.
insecureHostKeyAlgos = []string{
KeyAlgoRSA,
InsecureKeyAlgoDSA,
CertAlgoRSAv01,
InsecureCertAlgoDSAv01,
}
// supportedPubKeyAuthAlgos specifies the supported client public key
// authentication algorithms. Note that this doesn't include certificate
// types since those use the underlying algorithm. Order is irrelevant.
supportedPubKeyAuthAlgos = []string{
KeyAlgoED25519,
KeyAlgoSKED25519,
KeyAlgoSKECDSA256,
KeyAlgoECDSA256,
KeyAlgoECDSA384,
KeyAlgoECDSA521,
KeyAlgoRSASHA256,
KeyAlgoRSASHA512,
}
// defaultPubKeyAuthAlgos specifies the preferred client public key
// authentication algorithms. This list is sent to the client if it supports
// the server-sig-algs extension. Order is irrelevant.
defaultPubKeyAuthAlgos = []string{
KeyAlgoED25519,
KeyAlgoSKED25519,
KeyAlgoSKECDSA256,
KeyAlgoECDSA256,
KeyAlgoECDSA384,
KeyAlgoECDSA521,
KeyAlgoRSASHA256,
KeyAlgoRSASHA512,
KeyAlgoRSA,
InsecureKeyAlgoDSA,
}
// insecurePubKeyAuthAlgos specifies client public key authentication
// algorithms implemented by this package and which have security issues.
insecurePubKeyAuthAlgos = []string{
KeyAlgoRSA,
InsecureKeyAlgoDSA,
}
)
// NegotiatedAlgorithms defines algorithms negotiated between client and server.
type NegotiatedAlgorithms struct {
KeyExchange string
HostKey string
Read DirectionAlgorithms
Write DirectionAlgorithms
}
// preferredCiphers specifies the default preference for ciphers.
var preferredCiphers = []string{
"aes128-gcm@openssh.com", gcm256CipherID,
chacha20Poly1305ID,
"aes128-ctr", "aes192-ctr", "aes256-ctr",
// Algorithms defines a set of algorithms that can be configured in the client
// or server config for negotiation during a handshake.
type Algorithms struct {
KeyExchanges []string
Ciphers []string
MACs []string
HostKeys []string
PublicKeyAuths []string
}
// supportedKexAlgos specifies the supported key-exchange algorithms in
// preference order.
var supportedKexAlgos = []string{
kexAlgoCurve25519SHA256, kexAlgoCurve25519SHA256LibSSH,
// P384 and P521 are not constant-time yet, but since we don't
// reuse ephemeral keys, using them for ECDH should be OK.
kexAlgoECDH256, kexAlgoECDH384, kexAlgoECDH521,
kexAlgoDH14SHA256, kexAlgoDH16SHA512, kexAlgoDH14SHA1,
kexAlgoDH1SHA1,
// SupportedAlgorithms returns algorithms currently implemented by this package,
// excluding those with security issues, which are returned by
// InsecureAlgorithms. The algorithms listed here are in preference order.
func SupportedAlgorithms() Algorithms {
return Algorithms{
Ciphers: slices.Clone(supportedCiphers),
MACs: slices.Clone(supportedMACs),
KeyExchanges: slices.Clone(supportedKexAlgos),
HostKeys: slices.Clone(supportedHostKeyAlgos),
PublicKeyAuths: slices.Clone(supportedPubKeyAuthAlgos),
}
}
// serverForbiddenKexAlgos contains key exchange algorithms, that are forbidden
// for the server half.
var serverForbiddenKexAlgos = map[string]struct{}{
kexAlgoDHGEXSHA1: {}, // server half implementation is only minimal to satisfy the automated tests
kexAlgoDHGEXSHA256: {}, // server half implementation is only minimal to satisfy the automated tests
}
// preferredKexAlgos specifies the default preference for key-exchange
// algorithms in preference order. The diffie-hellman-group16-sha512 algorithm
// is disabled by default because it is a bit slower than the others.
var preferredKexAlgos = []string{
kexAlgoCurve25519SHA256, kexAlgoCurve25519SHA256LibSSH,
kexAlgoECDH256, kexAlgoECDH384, kexAlgoECDH521,
kexAlgoDH14SHA256, kexAlgoDH14SHA1,
}
// supportedHostKeyAlgos specifies the supported host-key algorithms (i.e. methods
// of authenticating servers) in preference order.
var supportedHostKeyAlgos = []string{
CertAlgoRSASHA256v01, CertAlgoRSASHA512v01,
CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01,
CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01,
KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521,
KeyAlgoRSASHA256, KeyAlgoRSASHA512,
KeyAlgoRSA, KeyAlgoDSA,
KeyAlgoED25519,
}
// supportedMACs specifies a default set of MAC algorithms in preference order.
// This is based on RFC 4253, section 6.4, but with hmac-md5 variants removed
// because they have reached the end of their useful life.
var supportedMACs = []string{
"hmac-sha2-256-etm@openssh.com", "hmac-sha2-512-etm@openssh.com", "hmac-sha2-256", "hmac-sha2-512", "hmac-sha1", "hmac-sha1-96",
// InsecureAlgorithms returns algorithms currently implemented by this package
// and which have security issues.
func InsecureAlgorithms() Algorithms {
return Algorithms{
KeyExchanges: slices.Clone(insecureKexAlgos),
Ciphers: slices.Clone(insecureCiphers),
MACs: slices.Clone(insecureMACs),
HostKeys: slices.Clone(insecureHostKeyAlgos),
PublicKeyAuths: slices.Clone(insecurePubKeyAuthAlgos),
}
}
var supportedCompressions = []string{compressionNone}
@ -94,13 +284,13 @@ var supportedCompressions = []string{compressionNone}
// hashFuncs keeps the mapping of supported signature algorithms to their
// respective hashes needed for signing and verification.
var hashFuncs = map[string]crypto.Hash{
KeyAlgoRSA: crypto.SHA1,
KeyAlgoRSASHA256: crypto.SHA256,
KeyAlgoRSASHA512: crypto.SHA512,
KeyAlgoDSA: crypto.SHA1,
KeyAlgoECDSA256: crypto.SHA256,
KeyAlgoECDSA384: crypto.SHA384,
KeyAlgoECDSA521: crypto.SHA512,
KeyAlgoRSA: crypto.SHA1,
KeyAlgoRSASHA256: crypto.SHA256,
KeyAlgoRSASHA512: crypto.SHA512,
InsecureKeyAlgoDSA: crypto.SHA1,
KeyAlgoECDSA256: crypto.SHA256,
KeyAlgoECDSA384: crypto.SHA384,
KeyAlgoECDSA521: crypto.SHA512,
// KeyAlgoED25519 doesn't pre-hash.
KeyAlgoSKECDSA256: crypto.SHA256,
KeyAlgoSKED25519: crypto.SHA256,
@ -135,18 +325,6 @@ func isRSACert(algo string) bool {
return isRSA(algo)
}
// supportedPubKeyAuthAlgos specifies the supported client public key
// authentication algorithms. Note that this doesn't include certificate types
// since those use the underlying algorithm. This list is sent to the client if
// it supports the server-sig-algs extension. Order is irrelevant.
var supportedPubKeyAuthAlgos = []string{
KeyAlgoED25519,
KeyAlgoSKED25519, KeyAlgoSKECDSA256,
KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521,
KeyAlgoRSASHA256, KeyAlgoRSASHA512, KeyAlgoRSA,
KeyAlgoDSA,
}
// unexpectedMessageError results when the SSH message that we received didn't
// match what we wanted.
func unexpectedMessageError(expected, got uint8) error {
@ -158,7 +336,7 @@ func parseError(tag uint8) error {
return fmt.Errorf("ssh: parse error in message type %d", tag)
}
func findCommon(what string, client []string, server []string) (common string, err error) {
func findCommon(what string, client []string, server []string, isClient bool) (string, error) {
for _, c := range client {
for _, s := range server {
if c == s {
@ -166,23 +344,49 @@ func findCommon(what string, client []string, server []string) (common string, e
}
}
}
return "", fmt.Errorf("ssh: no common algorithm for %s; client offered: %v, server offered: %v", what, client, server)
err := &AlgorithmNegotiationError{
What: what,
}
if isClient {
err.SupportedAlgorithms = client
err.RequestedAlgorithms = server
} else {
err.SupportedAlgorithms = server
err.RequestedAlgorithms = client
}
return "", err
}
// directionAlgorithms records algorithm choices in one direction (either read or write)
type directionAlgorithms struct {
// AlgorithmNegotiationError defines the error returned if the client and the
// server cannot agree on an algorithm for key exchange, host key, cipher, MAC.
type AlgorithmNegotiationError struct {
What string
// RequestedAlgorithms lists the algorithms supported by the peer.
RequestedAlgorithms []string
// SupportedAlgorithms lists the algorithms supported on our side.
SupportedAlgorithms []string
}
func (a *AlgorithmNegotiationError) Error() string {
return fmt.Sprintf("ssh: no common algorithm for %s; we offered: %v, peer offered: %v",
a.What, a.SupportedAlgorithms, a.RequestedAlgorithms)
}
// DirectionAlgorithms defines the algorithms negotiated in one direction
// (either read or write).
type DirectionAlgorithms struct {
Cipher string
MAC string
Compression string
compression string
}
// rekeyBytes returns a rekeying intervals in bytes.
func (a *directionAlgorithms) rekeyBytes() int64 {
func (a *DirectionAlgorithms) rekeyBytes() int64 {
// According to RFC 4344 block ciphers should rekey after
// 2^(BLOCKSIZE/4) blocks. For all AES flavors BLOCKSIZE is
// 128.
switch a.Cipher {
case "aes128-ctr", "aes192-ctr", "aes256-ctr", gcm128CipherID, gcm256CipherID, aes128cbcID:
case CipherAES128CTR, CipherAES192CTR, CipherAES256CTR, CipherAES128GCM, CipherAES256GCM, InsecureCipherAES128CBC:
return 16 * (1 << 32)
}
@ -192,66 +396,59 @@ func (a *directionAlgorithms) rekeyBytes() int64 {
}
var aeadCiphers = map[string]bool{
gcm128CipherID: true,
gcm256CipherID: true,
chacha20Poly1305ID: true,
CipherAES128GCM: true,
CipherAES256GCM: true,
CipherChaCha20Poly1305: true,
}
type algorithms struct {
kex string
hostKey string
w directionAlgorithms
r directionAlgorithms
}
func findAgreedAlgorithms(isClient bool, clientKexInit, serverKexInit *kexInitMsg) (algs *NegotiatedAlgorithms, err error) {
result := &NegotiatedAlgorithms{}
func findAgreedAlgorithms(isClient bool, clientKexInit, serverKexInit *kexInitMsg) (algs *algorithms, err error) {
result := &algorithms{}
result.kex, err = findCommon("key exchange", clientKexInit.KexAlgos, serverKexInit.KexAlgos)
result.KeyExchange, err = findCommon("key exchange", clientKexInit.KexAlgos, serverKexInit.KexAlgos, isClient)
if err != nil {
return
}
result.hostKey, err = findCommon("host key", clientKexInit.ServerHostKeyAlgos, serverKexInit.ServerHostKeyAlgos)
result.HostKey, err = findCommon("host key", clientKexInit.ServerHostKeyAlgos, serverKexInit.ServerHostKeyAlgos, isClient)
if err != nil {
return
}
stoc, ctos := &result.w, &result.r
stoc, ctos := &result.Write, &result.Read
if isClient {
ctos, stoc = stoc, ctos
}
ctos.Cipher, err = findCommon("client to server cipher", clientKexInit.CiphersClientServer, serverKexInit.CiphersClientServer)
ctos.Cipher, err = findCommon("client to server cipher", clientKexInit.CiphersClientServer, serverKexInit.CiphersClientServer, isClient)
if err != nil {
return
}
stoc.Cipher, err = findCommon("server to client cipher", clientKexInit.CiphersServerClient, serverKexInit.CiphersServerClient)
stoc.Cipher, err = findCommon("server to client cipher", clientKexInit.CiphersServerClient, serverKexInit.CiphersServerClient, isClient)
if err != nil {
return
}
if !aeadCiphers[ctos.Cipher] {
ctos.MAC, err = findCommon("client to server MAC", clientKexInit.MACsClientServer, serverKexInit.MACsClientServer)
ctos.MAC, err = findCommon("client to server MAC", clientKexInit.MACsClientServer, serverKexInit.MACsClientServer, isClient)
if err != nil {
return
}
}
if !aeadCiphers[stoc.Cipher] {
stoc.MAC, err = findCommon("server to client MAC", clientKexInit.MACsServerClient, serverKexInit.MACsServerClient)
stoc.MAC, err = findCommon("server to client MAC", clientKexInit.MACsServerClient, serverKexInit.MACsServerClient, isClient)
if err != nil {
return
}
}
ctos.Compression, err = findCommon("client to server compression", clientKexInit.CompressionClientServer, serverKexInit.CompressionClientServer)
ctos.compression, err = findCommon("client to server compression", clientKexInit.CompressionClientServer, serverKexInit.CompressionClientServer, isClient)
if err != nil {
return
}
stoc.Compression, err = findCommon("server to client compression", clientKexInit.CompressionServerClient, serverKexInit.CompressionServerClient)
stoc.compression, err = findCommon("server to client compression", clientKexInit.CompressionServerClient, serverKexInit.CompressionServerClient, isClient)
if err != nil {
return
}
@ -297,7 +494,7 @@ func (c *Config) SetDefaults() {
c.Rand = rand.Reader
}
if c.Ciphers == nil {
c.Ciphers = preferredCiphers
c.Ciphers = defaultCiphers
}
var ciphers []string
for _, c := range c.Ciphers {
@ -309,19 +506,22 @@ func (c *Config) SetDefaults() {
c.Ciphers = ciphers
if c.KeyExchanges == nil {
c.KeyExchanges = preferredKexAlgos
c.KeyExchanges = defaultKexAlgos
}
var kexs []string
for _, k := range c.KeyExchanges {
if kexAlgoMap[k] != nil {
// Ignore the KEX if we have no kexAlgoMap definition.
kexs = append(kexs, k)
if k == KeyExchangeCurve25519 && !contains(c.KeyExchanges, keyExchangeCurve25519LibSSH) {
kexs = append(kexs, keyExchangeCurve25519LibSSH)
}
}
}
c.KeyExchanges = kexs
if c.MACs == nil {
c.MACs = supportedMACs
c.MACs = defaultMACs
}
var macs []string
for _, m := range c.MACs {

View File

@ -74,6 +74,13 @@ type Conn interface {
// Disconnect
}
// AlgorithmsConnMetadata is a ConnMetadata that can return the algorithms
// negotiated between client and server.
type AlgorithmsConnMetadata interface {
ConnMetadata
Algorithms() NegotiatedAlgorithms
}
// DiscardRequests consumes and rejects all requests from the
// passed-in channel.
func DiscardRequests(in <-chan *Request) {
@ -106,6 +113,7 @@ type sshConn struct {
sessionID []byte
clientVersion []byte
serverVersion []byte
algorithms NegotiatedAlgorithms
}
func dup(src []byte) []byte {
@ -141,3 +149,7 @@ func (c *sshConn) ClientVersion() []byte {
func (c *sshConn) ServerVersion() []byte {
return dup(c.serverVersion)
}
func (c *sshConn) Algorithms() NegotiatedAlgorithms {
return c.algorithms
}

View File

@ -16,6 +16,7 @@ References:
[PROTOCOL]: https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL?rev=HEAD
[PROTOCOL.certkeys]: http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.certkeys?rev=HEAD
[SSH-PARAMETERS]: http://www.iana.org/assignments/ssh-parameters/ssh-parameters.xml#ssh-parameters-1
[SSH-CERTS]: https://datatracker.ietf.org/doc/html/draft-miller-ssh-cert-01
This package does not fall under the stability promise of the Go language itself,
so its API may be changed when pressing needs arise.

View File

@ -5,7 +5,6 @@
package ssh
import (
"crypto/rand"
"errors"
"fmt"
"io"
@ -39,7 +38,7 @@ type keyingTransport interface {
// prepareKeyChange sets up a key change. The key change for a
// direction will be effected if a msgNewKeys message is sent
// or received.
prepareKeyChange(*algorithms, *kexResult) error
prepareKeyChange(*NegotiatedAlgorithms, *kexResult) error
// setStrictMode sets the strict KEX mode, notably triggering
// sequence number resets on sending or receiving msgNewKeys.
@ -116,7 +115,7 @@ type handshakeTransport struct {
bannerCallback BannerCallback
// Algorithms agreed in the last key exchange.
algorithms *algorithms
algorithms *NegotiatedAlgorithms
// Counters exclusively owned by readLoop.
readPacketsLeft uint32
@ -165,7 +164,7 @@ func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byt
if config.HostKeyAlgorithms != nil {
t.hostKeyAlgorithms = config.HostKeyAlgorithms
} else {
t.hostKeyAlgorithms = supportedHostKeyAlgos
t.hostKeyAlgorithms = defaultHostKeyAlgos
}
go t.readLoop()
go t.kexLoop()
@ -185,6 +184,10 @@ func (t *handshakeTransport) getSessionID() []byte {
return t.sessionID
}
func (t *handshakeTransport) getAlgorithms() NegotiatedAlgorithms {
return *t.algorithms
}
// waitSession waits for the session to be established. This should be
// the first thing to call after instantiating handshakeTransport.
func (t *handshakeTransport) waitSession() error {
@ -291,7 +294,7 @@ func (t *handshakeTransport) resetWriteThresholds() {
if t.config.RekeyThreshold > 0 {
t.writeBytesLeft = int64(t.config.RekeyThreshold)
} else if t.algorithms != nil {
t.writeBytesLeft = t.algorithms.w.rekeyBytes()
t.writeBytesLeft = t.algorithms.Write.rekeyBytes()
} else {
t.writeBytesLeft = 1 << 30
}
@ -408,7 +411,7 @@ func (t *handshakeTransport) resetReadThresholds() {
if t.config.RekeyThreshold > 0 {
t.readBytesLeft = int64(t.config.RekeyThreshold)
} else if t.algorithms != nil {
t.readBytesLeft = t.algorithms.r.rekeyBytes()
t.readBytesLeft = t.algorithms.Read.rekeyBytes()
} else {
t.readBytesLeft = 1 << 30
}
@ -501,7 +504,7 @@ func (t *handshakeTransport) sendKexInit() error {
CompressionClientServer: supportedCompressions,
CompressionServerClient: supportedCompressions,
}
io.ReadFull(rand.Reader, msg.Cookie[:])
io.ReadFull(t.config.Rand, msg.Cookie[:])
// We mutate the KexAlgos slice, in order to add the kex-strict extension algorithm,
// and possibly to add the ext-info extension algorithm. Since the slice may be the
@ -701,9 +704,9 @@ func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
}
}
kex, ok := kexAlgoMap[t.algorithms.kex]
kex, ok := kexAlgoMap[t.algorithms.KeyExchange]
if !ok {
return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex)
return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.KeyExchange)
}
var result *kexResult
@ -810,12 +813,12 @@ func pickHostKey(hostKeys []Signer, algo string) AlgorithmSigner {
}
func (t *handshakeTransport) server(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
hostKey := pickHostKey(t.hostKeys, t.algorithms.hostKey)
hostKey := pickHostKey(t.hostKeys, t.algorithms.HostKey)
if hostKey == nil {
return nil, errors.New("ssh: internal error: negotiated unsupported signature type")
}
r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey, t.algorithms.hostKey)
r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey, t.algorithms.HostKey)
return r, err
}
@ -830,7 +833,7 @@ func (t *handshakeTransport) client(kex kexAlgorithm, magics *handshakeMagics) (
return nil, err
}
if err := verifyHostKeySignature(hostKey, t.algorithms.hostKey, result); err != nil {
if err := verifyHostKeySignature(hostKey, t.algorithms.HostKey, result); err != nil {
return nil, err
}

107
vendor/golang.org/x/crypto/ssh/kex.go generated vendored
View File

@ -20,21 +20,18 @@ import (
)
const (
kexAlgoDH1SHA1 = "diffie-hellman-group1-sha1"
kexAlgoDH14SHA1 = "diffie-hellman-group14-sha1"
kexAlgoDH14SHA256 = "diffie-hellman-group14-sha256"
kexAlgoDH16SHA512 = "diffie-hellman-group16-sha512"
kexAlgoECDH256 = "ecdh-sha2-nistp256"
kexAlgoECDH384 = "ecdh-sha2-nistp384"
kexAlgoECDH521 = "ecdh-sha2-nistp521"
kexAlgoCurve25519SHA256LibSSH = "curve25519-sha256@libssh.org"
kexAlgoCurve25519SHA256 = "curve25519-sha256"
// For the following kex only the client half contains a production
// ready implementation. The server half only consists of a minimal
// implementation to satisfy the automated tests.
kexAlgoDHGEXSHA1 = "diffie-hellman-group-exchange-sha1"
kexAlgoDHGEXSHA256 = "diffie-hellman-group-exchange-sha256"
// This is the group called diffie-hellman-group1-sha1 in RFC 4253 and
// Oakley Group 2 in RFC 2409.
oakleyGroup2 = "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF"
// This is the group called diffie-hellman-group14-sha1 in RFC 4253 and
// Oakley Group 14 in RFC 3526.
oakleyGroup14 = "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF"
// This is the group called diffie-hellman-group15-sha512 in RFC 8268 and
// Oakley Group 15 in RFC 3526.
oakleyGroup15 = "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF"
// This is the group called diffie-hellman-group16-sha512 in RFC 8268 and
// Oakley Group 16 in RFC 3526.
oakleyGroup16 = "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199FFFFFFFFFFFFFFFF"
)
// kexResult captures the outcome of a key exchange.
@ -402,53 +399,46 @@ func ecHash(curve elliptic.Curve) crypto.Hash {
var kexAlgoMap = map[string]kexAlgorithm{}
func init() {
// This is the group called diffie-hellman-group1-sha1 in
// RFC 4253 and Oakley Group 2 in RFC 2409.
p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF", 16)
kexAlgoMap[kexAlgoDH1SHA1] = &dhGroup{
p, _ := new(big.Int).SetString(oakleyGroup2, 16)
kexAlgoMap[InsecureKeyExchangeDH1SHA1] = &dhGroup{
g: new(big.Int).SetInt64(2),
p: p,
pMinus1: new(big.Int).Sub(p, bigOne),
hashFunc: crypto.SHA1,
}
// This are the groups called diffie-hellman-group14-sha1 and
// diffie-hellman-group14-sha256 in RFC 4253 and RFC 8268,
// and Oakley Group 14 in RFC 3526.
p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16)
p, _ = new(big.Int).SetString(oakleyGroup14, 16)
group14 := &dhGroup{
g: new(big.Int).SetInt64(2),
p: p,
pMinus1: new(big.Int).Sub(p, bigOne),
}
kexAlgoMap[kexAlgoDH14SHA1] = &dhGroup{
kexAlgoMap[InsecureKeyExchangeDH14SHA1] = &dhGroup{
g: group14.g, p: group14.p, pMinus1: group14.pMinus1,
hashFunc: crypto.SHA1,
}
kexAlgoMap[kexAlgoDH14SHA256] = &dhGroup{
kexAlgoMap[KeyExchangeDH14SHA256] = &dhGroup{
g: group14.g, p: group14.p, pMinus1: group14.pMinus1,
hashFunc: crypto.SHA256,
}
// This is the group called diffie-hellman-group16-sha512 in RFC
// 8268 and Oakley Group 16 in RFC 3526.
p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199FFFFFFFFFFFFFFFF", 16)
p, _ = new(big.Int).SetString(oakleyGroup16, 16)
kexAlgoMap[kexAlgoDH16SHA512] = &dhGroup{
kexAlgoMap[KeyExchangeDH16SHA512] = &dhGroup{
g: new(big.Int).SetInt64(2),
p: p,
pMinus1: new(big.Int).Sub(p, bigOne),
hashFunc: crypto.SHA512,
}
kexAlgoMap[kexAlgoECDH521] = &ecdh{elliptic.P521()}
kexAlgoMap[kexAlgoECDH384] = &ecdh{elliptic.P384()}
kexAlgoMap[kexAlgoECDH256] = &ecdh{elliptic.P256()}
kexAlgoMap[kexAlgoCurve25519SHA256] = &curve25519sha256{}
kexAlgoMap[kexAlgoCurve25519SHA256LibSSH] = &curve25519sha256{}
kexAlgoMap[kexAlgoDHGEXSHA1] = &dhGEXSHA{hashFunc: crypto.SHA1}
kexAlgoMap[kexAlgoDHGEXSHA256] = &dhGEXSHA{hashFunc: crypto.SHA256}
kexAlgoMap[KeyExchangeECDHP521] = &ecdh{elliptic.P521()}
kexAlgoMap[KeyExchangeECDHP384] = &ecdh{elliptic.P384()}
kexAlgoMap[KeyExchangeECDHP256] = &ecdh{elliptic.P256()}
kexAlgoMap[KeyExchangeCurve25519] = &curve25519sha256{}
kexAlgoMap[keyExchangeCurve25519LibSSH] = &curve25519sha256{}
kexAlgoMap[InsecureKeyExchangeDHGEXSHA1] = &dhGEXSHA{hashFunc: crypto.SHA1}
kexAlgoMap[KeyExchangeDHGEXSHA256] = &dhGEXSHA{hashFunc: crypto.SHA256}
}
// curve25519sha256 implements the curve25519-sha256 (formerly known as
@ -601,9 +591,9 @@ const (
func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
// Send GexRequest
kexDHGexRequest := kexDHGexRequestMsg{
MinBits: dhGroupExchangeMinimumBits,
PreferedBits: dhGroupExchangePreferredBits,
MaxBits: dhGroupExchangeMaximumBits,
MinBits: dhGroupExchangeMinimumBits,
PreferredBits: dhGroupExchangePreferredBits,
MaxBits: dhGroupExchangeMaximumBits,
}
if err := c.writePacket(Marshal(&kexDHGexRequest)); err != nil {
return nil, err
@ -690,9 +680,7 @@ func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshak
}
// Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256.
//
// This is a minimal implementation to satisfy the automated tests.
func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv AlgorithmSigner, algo string) (result *kexResult, err error) {
func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv AlgorithmSigner, algo string) (result *kexResult, err error) {
// Receive GexRequest
packet, err := c.readPacket()
if err != nil {
@ -702,13 +690,32 @@ func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshake
if err = Unmarshal(packet, &kexDHGexRequest); err != nil {
return
}
// We check that the request received is valid and that the MaxBits
// requested are at least equal to our supported minimum. This is the same
// check done in OpenSSH:
// https://github.com/openssh/openssh-portable/blob/80a2f64b/kexgexs.c#L94
//
// Furthermore, we also check that the required MinBits are less than or
// equal to 4096 because we can use up to Oakley Group 16.
if kexDHGexRequest.MaxBits < kexDHGexRequest.MinBits || kexDHGexRequest.PreferredBits < kexDHGexRequest.MinBits ||
kexDHGexRequest.MaxBits < kexDHGexRequest.PreferredBits || kexDHGexRequest.MaxBits < dhGroupExchangeMinimumBits ||
kexDHGexRequest.MinBits > 4096 {
return nil, fmt.Errorf("ssh: DH GEX request out of range, min: %d, max: %d, preferred: %d", kexDHGexRequest.MinBits,
kexDHGexRequest.MaxBits, kexDHGexRequest.PreferredBits)
}
var p *big.Int
// We hardcode sending Oakley Group 14 (2048 bits), Oakley Group 15 (3072
// bits) or Oakley Group 16 (4096 bits), based on the requested max size.
if kexDHGexRequest.MaxBits < 3072 {
p, _ = new(big.Int).SetString(oakleyGroup14, 16)
} else if kexDHGexRequest.MaxBits < 4096 {
p, _ = new(big.Int).SetString(oakleyGroup15, 16)
} else {
p, _ = new(big.Int).SetString(oakleyGroup16, 16)
}
// Send GexGroup
// This is the group called diffie-hellman-group14-sha1 in RFC
// 4253 and Oakley Group 14 in RFC 3526.
p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16)
g := big.NewInt(2)
msg := &kexDHGexGroupMsg{
P: p,
G: g,
@ -746,9 +753,9 @@ func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshake
h := gex.hashFunc.New()
magics.write(h)
writeString(h, hostKeyBytes)
binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMinimumBits))
binary.Write(h, binary.BigEndian, uint32(dhGroupExchangePreferredBits))
binary.Write(h, binary.BigEndian, uint32(dhGroupExchangeMaximumBits))
binary.Write(h, binary.BigEndian, kexDHGexRequest.MinBits)
binary.Write(h, binary.BigEndian, kexDHGexRequest.PreferredBits)
binary.Write(h, binary.BigEndian, kexDHGexRequest.MaxBits)
writeInt(h, p)
writeInt(h, g)
writeInt(h, kexDHGexInit.X)

View File

@ -36,14 +36,19 @@ import (
// ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
// arguments.
const (
KeyAlgoRSA = "ssh-rsa"
KeyAlgoDSA = "ssh-dss"
KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
KeyAlgoED25519 = "ssh-ed25519"
KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com"
KeyAlgoRSA = "ssh-rsa"
// Deprecated: DSA is only supported at insecure key sizes, and was removed
// from major implementations.
KeyAlgoDSA = InsecureKeyAlgoDSA
// Deprecated: DSA is only supported at insecure key sizes, and was removed
// from major implementations.
InsecureKeyAlgoDSA = "ssh-dss"
KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
KeyAlgoED25519 = "ssh-ed25519"
KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com"
// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
// public key formats, so they can't appear as a PublicKey.Type. The
@ -67,7 +72,7 @@ func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err err
switch algo {
case KeyAlgoRSA:
return parseRSA(in)
case KeyAlgoDSA:
case InsecureKeyAlgoDSA:
return parseDSA(in)
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
return parseECDSA(in)
@ -77,7 +82,7 @@ func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err err
return parseED25519(in)
case KeyAlgoSKED25519:
return parseSKEd25519(in)
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
case CertAlgoRSAv01, InsecureCertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
cert, err := parseCert(in, certKeyAlgoNames[algo])
if err != nil {
return nil, nil, err
@ -268,7 +273,7 @@ func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []str
return nil, "", nil, nil, errors.New("ssh: no key found")
}
// ParsePublicKey parses an SSH public key formatted for use in
// ParsePublicKey parses an SSH public key or certificate formatted for use in
// the SSH wire protocol according to RFC 4253, section 6.6.
func ParsePublicKey(in []byte) (out PublicKey, err error) {
algo, in, ok := parseString(in)

View File

@ -302,8 +302,8 @@ func (k *KnownKey) String() string {
// applications can offer an interactive prompt to the user.
type KeyError struct {
// Want holds the accepted host keys. For each key algorithm,
// there can be one hostkey. If Want is empty, the host is
// unknown. If Want is non-empty, there was a mismatch, which
// there can be multiple hostkeys. If Want is empty, the host
// is unknown. If Want is non-empty, there was a mismatch, which
// can signify a MITM attack.
Want []KnownKey
}
@ -358,34 +358,20 @@ func (db *hostKeyDB) checkAddr(a addr, remoteKey ssh.PublicKey) error {
// is just a key for the IP address, but not for the
// hostname?
// Algorithm => key.
knownKeys := map[string]KnownKey{}
keyErr := &KeyError{}
for _, l := range db.lines {
if l.match(a) {
typ := l.knownKey.Key.Type()
if _, ok := knownKeys[typ]; !ok {
knownKeys[typ] = l.knownKey
}
if !l.match(a) {
continue
}
keyErr.Want = append(keyErr.Want, l.knownKey)
if keyEq(l.knownKey.Key, remoteKey) {
return nil
}
}
keyErr := &KeyError{}
for _, v := range knownKeys {
keyErr.Want = append(keyErr.Want, v)
}
// Unknown remote host.
if len(knownKeys) == 0 {
return keyErr
}
// If the remote host starts using a different, unknown key type, we
// also interpret that as a mismatch.
if known, ok := knownKeys[remoteKey.Type()]; !ok || !keyEq(known.Key, remoteKey) {
return keyErr
}
return nil
return keyErr
}
// The Read function parses file contents.

View File

@ -47,22 +47,22 @@ func (t truncatingMAC) Size() int {
func (t truncatingMAC) BlockSize() int { return t.hmac.BlockSize() }
var macModes = map[string]*macMode{
"hmac-sha2-512-etm@openssh.com": {64, true, func(key []byte) hash.Hash {
HMACSHA512ETM: {64, true, func(key []byte) hash.Hash {
return hmac.New(sha512.New, key)
}},
"hmac-sha2-256-etm@openssh.com": {32, true, func(key []byte) hash.Hash {
HMACSHA256ETM: {32, true, func(key []byte) hash.Hash {
return hmac.New(sha256.New, key)
}},
"hmac-sha2-512": {64, false, func(key []byte) hash.Hash {
HMACSHA512: {64, false, func(key []byte) hash.Hash {
return hmac.New(sha512.New, key)
}},
"hmac-sha2-256": {32, false, func(key []byte) hash.Hash {
HMACSHA256: {32, false, func(key []byte) hash.Hash {
return hmac.New(sha256.New, key)
}},
"hmac-sha1": {20, false, func(key []byte) hash.Hash {
HMACSHA1: {20, false, func(key []byte) hash.Hash {
return hmac.New(sha1.New, key)
}},
"hmac-sha1-96": {20, false, func(key []byte) hash.Hash {
InsecureHMACSHA196: {20, false, func(key []byte) hash.Hash {
return truncatingMAC{12, hmac.New(sha1.New, key)}
}},
}

View File

@ -122,9 +122,9 @@ type kexDHGexReplyMsg struct {
const msgKexDHGexRequest = 34
type kexDHGexRequestMsg struct {
MinBits uint32 `sshtype:"34"`
PreferedBits uint32
MaxBits uint32
MinBits uint32 `sshtype:"34"`
PreferredBits uint32
MaxBits uint32
}
// See RFC 4253, section 10.

183
vendor/golang.org/x/crypto/ssh/mlkem.go generated vendored Normal file
View File

@ -0,0 +1,183 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.24
package ssh
import (
"crypto"
"crypto/mlkem"
"crypto/sha256"
"errors"
"fmt"
"io"
"runtime"
"slices"
"golang.org/x/crypto/curve25519"
)
func init() {
// After Go 1.24rc1 mlkem swapped the order of return values of Encapsulate.
// See #70950.
if runtime.Version() == "go1.24rc1" {
return
}
supportedKexAlgos = slices.Insert(supportedKexAlgos, 0, KeyExchangeMLKEM768X25519)
defaultKexAlgos = slices.Insert(defaultKexAlgos, 0, KeyExchangeMLKEM768X25519)
kexAlgoMap[KeyExchangeMLKEM768X25519] = &mlkem768WithCurve25519sha256{}
}
// mlkem768WithCurve25519sha256 implements the hybrid ML-KEM768 with
// curve25519-sha256 key exchange method, as described by
// draft-kampanakis-curdle-ssh-pq-ke-05 section 2.3.3.
type mlkem768WithCurve25519sha256 struct{}
func (kex *mlkem768WithCurve25519sha256) Client(c packetConn, rand io.Reader, magics *handshakeMagics) (*kexResult, error) {
var c25519kp curve25519KeyPair
if err := c25519kp.generate(rand); err != nil {
return nil, err
}
seed := make([]byte, mlkem.SeedSize)
if _, err := io.ReadFull(rand, seed); err != nil {
return nil, err
}
mlkemDk, err := mlkem.NewDecapsulationKey768(seed)
if err != nil {
return nil, err
}
hybridKey := append(mlkemDk.EncapsulationKey().Bytes(), c25519kp.pub[:]...)
if err := c.writePacket(Marshal(&kexECDHInitMsg{hybridKey})); err != nil {
return nil, err
}
packet, err := c.readPacket()
if err != nil {
return nil, err
}
var reply kexECDHReplyMsg
if err = Unmarshal(packet, &reply); err != nil {
return nil, err
}
if len(reply.EphemeralPubKey) != mlkem.CiphertextSize768+32 {
return nil, errors.New("ssh: peer's mlkem768x25519 public value has wrong length")
}
// Perform KEM decapsulate operation to obtain shared key from ML-KEM.
mlkem768Secret, err := mlkemDk.Decapsulate(reply.EphemeralPubKey[:mlkem.CiphertextSize768])
if err != nil {
return nil, err
}
// Complete Curve25519 ECDH to obtain its shared key.
c25519Secret, err := curve25519.X25519(c25519kp.priv[:], reply.EphemeralPubKey[mlkem.CiphertextSize768:])
if err != nil {
return nil, fmt.Errorf("ssh: peer's mlkem768x25519 public value is not valid: %w", err)
}
// Compute actual shared key.
h := sha256.New()
h.Write(mlkem768Secret)
h.Write(c25519Secret)
secret := h.Sum(nil)
h.Reset()
magics.write(h)
writeString(h, reply.HostKey)
writeString(h, hybridKey)
writeString(h, reply.EphemeralPubKey)
K := make([]byte, stringLength(len(secret)))
marshalString(K, secret)
h.Write(K)
return &kexResult{
H: h.Sum(nil),
K: K,
HostKey: reply.HostKey,
Signature: reply.Signature,
Hash: crypto.SHA256,
}, nil
}
func (kex *mlkem768WithCurve25519sha256) Server(c packetConn, rand io.Reader, magics *handshakeMagics, priv AlgorithmSigner, algo string) (*kexResult, error) {
packet, err := c.readPacket()
if err != nil {
return nil, err
}
var kexInit kexECDHInitMsg
if err = Unmarshal(packet, &kexInit); err != nil {
return nil, err
}
if len(kexInit.ClientPubKey) != mlkem.EncapsulationKeySize768+32 {
return nil, errors.New("ssh: peer's ML-KEM768/curve25519 public value has wrong length")
}
encapsulationKey, err := mlkem.NewEncapsulationKey768(kexInit.ClientPubKey[:mlkem.EncapsulationKeySize768])
if err != nil {
return nil, fmt.Errorf("ssh: peer's ML-KEM768 encapsulation key is not valid: %w", err)
}
// Perform KEM encapsulate operation to obtain ciphertext and shared key.
mlkem768Secret, mlkem768Ciphertext := encapsulationKey.Encapsulate()
// Perform server side of Curve25519 ECDH to obtain server public value and
// shared key.
var c25519kp curve25519KeyPair
if err := c25519kp.generate(rand); err != nil {
return nil, err
}
c25519Secret, err := curve25519.X25519(c25519kp.priv[:], kexInit.ClientPubKey[mlkem.EncapsulationKeySize768:])
if err != nil {
return nil, fmt.Errorf("ssh: peer's ML-KEM768/curve25519 public value is not valid: %w", err)
}
hybridKey := append(mlkem768Ciphertext, c25519kp.pub[:]...)
// Compute actual shared key.
h := sha256.New()
h.Write(mlkem768Secret)
h.Write(c25519Secret)
secret := h.Sum(nil)
hostKeyBytes := priv.PublicKey().Marshal()
h.Reset()
magics.write(h)
writeString(h, hostKeyBytes)
writeString(h, kexInit.ClientPubKey)
writeString(h, hybridKey)
K := make([]byte, stringLength(len(secret)))
marshalString(K, secret)
h.Write(K)
H := h.Sum(nil)
sig, err := signAndMarshal(priv, rand, H, algo)
if err != nil {
return nil, err
}
reply := kexECDHReplyMsg{
EphemeralPubKey: hybridKey,
HostKey: hostKeyBytes,
Signature: sig,
}
if err := c.writePacket(Marshal(&reply)); err != nil {
return nil, err
}
return &kexResult{
H: H,
K: K,
HostKey: hostKeyBytes,
Signature: sig,
Hash: crypto.SHA256,
}, nil
}

View File

@ -243,22 +243,15 @@ func NewServerConn(c net.Conn, config *ServerConfig) (*ServerConn, <-chan NewCha
fullConf.MaxAuthTries = 6
}
if len(fullConf.PublicKeyAuthAlgorithms) == 0 {
fullConf.PublicKeyAuthAlgorithms = supportedPubKeyAuthAlgos
fullConf.PublicKeyAuthAlgorithms = defaultPubKeyAuthAlgos
} else {
for _, algo := range fullConf.PublicKeyAuthAlgorithms {
if !contains(supportedPubKeyAuthAlgos, algo) {
if !contains(SupportedAlgorithms().PublicKeyAuths, algo) && !contains(InsecureAlgorithms().PublicKeyAuths, algo) {
c.Close()
return nil, nil, nil, fmt.Errorf("ssh: unsupported public key authentication algorithm %s", algo)
}
}
}
// Check if the config contains any unsupported key exchanges
for _, kex := range fullConf.KeyExchanges {
if _, ok := serverForbiddenKexAlgos[kex]; ok {
c.Close()
return nil, nil, nil, fmt.Errorf("ssh: unsupported key exchange %s for server", kex)
}
}
s := &connection{
sshConn: sshConn{conn: c},
@ -315,6 +308,7 @@ func (s *connection) serverHandshake(config *ServerConfig) (*Permissions, error)
// We just did the key change, so the session ID is established.
s.sessionID = s.transport.getSessionID()
s.algorithms = s.transport.getAlgorithms()
var packet []byte
if packet, err = s.transport.readPacket(); err != nil {

View File

@ -16,13 +16,6 @@ import (
// wire. No message decoding is done, to minimize the impact on timing.
const debugTransport = false
const (
gcm128CipherID = "aes128-gcm@openssh.com"
gcm256CipherID = "aes256-gcm@openssh.com"
aes128cbcID = "aes128-cbc"
tripledescbcID = "3des-cbc"
)
// packetConn represents a transport that implements packet based
// operations.
type packetConn interface {
@ -92,14 +85,14 @@ func (t *transport) setInitialKEXDone() {
// prepareKeyChange sets up key material for a keychange. The key changes in
// both directions are triggered by reading and writing a msgNewKey packet
// respectively.
func (t *transport) prepareKeyChange(algs *algorithms, kexResult *kexResult) error {
ciph, err := newPacketCipher(t.reader.dir, algs.r, kexResult)
func (t *transport) prepareKeyChange(algs *NegotiatedAlgorithms, kexResult *kexResult) error {
ciph, err := newPacketCipher(t.reader.dir, algs.Read, kexResult)
if err != nil {
return err
}
t.reader.pendingKeyChange <- ciph
ciph, err = newPacketCipher(t.writer.dir, algs.w, kexResult)
ciph, err = newPacketCipher(t.writer.dir, algs.Write, kexResult)
if err != nil {
return err
}
@ -259,7 +252,7 @@ var (
// setupKeys sets the cipher and MAC keys from kex.K, kex.H and sessionId, as
// described in RFC 4253, section 6.4. direction should either be serverKeys
// (to setup server->client keys) or clientKeys (for client->server keys).
func newPacketCipher(d direction, algs directionAlgorithms, kex *kexResult) (packetCipher, error) {
func newPacketCipher(d direction, algs DirectionAlgorithms, kex *kexResult) (packetCipher, error) {
cipherMode := cipherModes[algs.Cipher]
iv := make([]byte, cipherMode.ivSize)