forked from toolshed/abra
		
	
		
			
				
	
	
		
			399 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			399 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2016 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Package chacha20 implements the ChaCha20 and XChaCha20 encryption algorithms
 | |
| // as specified in RFC 8439 and draft-irtf-cfrg-xchacha-01.
 | |
| package chacha20
 | |
| 
 | |
| import (
 | |
| 	"crypto/cipher"
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"math/bits"
 | |
| 
 | |
| 	"golang.org/x/crypto/internal/alias"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// KeySize is the size of the key used by this cipher, in bytes.
 | |
| 	KeySize = 32
 | |
| 
 | |
| 	// NonceSize is the size of the nonce used with the standard variant of this
 | |
| 	// cipher, in bytes.
 | |
| 	//
 | |
| 	// Note that this is too short to be safely generated at random if the same
 | |
| 	// key is reused more than 2³² times.
 | |
| 	NonceSize = 12
 | |
| 
 | |
| 	// NonceSizeX is the size of the nonce used with the XChaCha20 variant of
 | |
| 	// this cipher, in bytes.
 | |
| 	NonceSizeX = 24
 | |
| )
 | |
| 
 | |
| // Cipher is a stateful instance of ChaCha20 or XChaCha20 using a particular key
 | |
| // and nonce. A *Cipher implements the cipher.Stream interface.
 | |
| type Cipher struct {
 | |
| 	// The ChaCha20 state is 16 words: 4 constant, 8 of key, 1 of counter
 | |
| 	// (incremented after each block), and 3 of nonce.
 | |
| 	key     [8]uint32
 | |
| 	counter uint32
 | |
| 	nonce   [3]uint32
 | |
| 
 | |
| 	// The last len bytes of buf are leftover key stream bytes from the previous
 | |
| 	// XORKeyStream invocation. The size of buf depends on how many blocks are
 | |
| 	// computed at a time by xorKeyStreamBlocks.
 | |
| 	buf [bufSize]byte
 | |
| 	len int
 | |
| 
 | |
| 	// overflow is set when the counter overflowed, no more blocks can be
 | |
| 	// generated, and the next XORKeyStream call should panic.
 | |
| 	overflow bool
 | |
| 
 | |
| 	// The counter-independent results of the first round are cached after they
 | |
| 	// are computed the first time.
 | |
| 	precompDone      bool
 | |
| 	p1, p5, p9, p13  uint32
 | |
| 	p2, p6, p10, p14 uint32
 | |
| 	p3, p7, p11, p15 uint32
 | |
| }
 | |
| 
 | |
| var _ cipher.Stream = (*Cipher)(nil)
 | |
| 
 | |
| // NewUnauthenticatedCipher creates a new ChaCha20 stream cipher with the given
 | |
| // 32 bytes key and a 12 or 24 bytes nonce. If a nonce of 24 bytes is provided,
 | |
| // the XChaCha20 construction will be used. It returns an error if key or nonce
 | |
| // have any other length.
 | |
| //
 | |
| // Note that ChaCha20, like all stream ciphers, is not authenticated and allows
 | |
| // attackers to silently tamper with the plaintext. For this reason, it is more
 | |
| // appropriate as a building block than as a standalone encryption mechanism.
 | |
| // Instead, consider using package golang.org/x/crypto/chacha20poly1305.
 | |
| func NewUnauthenticatedCipher(key, nonce []byte) (*Cipher, error) {
 | |
| 	// This function is split into a wrapper so that the Cipher allocation will
 | |
| 	// be inlined, and depending on how the caller uses the return value, won't
 | |
| 	// escape to the heap.
 | |
| 	c := &Cipher{}
 | |
| 	return newUnauthenticatedCipher(c, key, nonce)
 | |
| }
 | |
| 
 | |
| func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) {
 | |
| 	if len(key) != KeySize {
 | |
| 		return nil, errors.New("chacha20: wrong key size")
 | |
| 	}
 | |
| 	if len(nonce) == NonceSizeX {
 | |
| 		// XChaCha20 uses the ChaCha20 core to mix 16 bytes of the nonce into a
 | |
| 		// derived key, allowing it to operate on a nonce of 24 bytes. See
 | |
| 		// draft-irtf-cfrg-xchacha-01, Section 2.3.
 | |
| 		key, _ = HChaCha20(key, nonce[0:16])
 | |
| 		cNonce := make([]byte, NonceSize)
 | |
| 		copy(cNonce[4:12], nonce[16:24])
 | |
| 		nonce = cNonce
 | |
| 	} else if len(nonce) != NonceSize {
 | |
| 		return nil, errors.New("chacha20: wrong nonce size")
 | |
| 	}
 | |
| 
 | |
| 	key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint
 | |
| 	c.key = [8]uint32{
 | |
| 		binary.LittleEndian.Uint32(key[0:4]),
 | |
| 		binary.LittleEndian.Uint32(key[4:8]),
 | |
| 		binary.LittleEndian.Uint32(key[8:12]),
 | |
| 		binary.LittleEndian.Uint32(key[12:16]),
 | |
| 		binary.LittleEndian.Uint32(key[16:20]),
 | |
| 		binary.LittleEndian.Uint32(key[20:24]),
 | |
| 		binary.LittleEndian.Uint32(key[24:28]),
 | |
| 		binary.LittleEndian.Uint32(key[28:32]),
 | |
| 	}
 | |
| 	c.nonce = [3]uint32{
 | |
| 		binary.LittleEndian.Uint32(nonce[0:4]),
 | |
| 		binary.LittleEndian.Uint32(nonce[4:8]),
 | |
| 		binary.LittleEndian.Uint32(nonce[8:12]),
 | |
| 	}
 | |
| 	return c, nil
 | |
| }
 | |
| 
 | |
| // The constant first 4 words of the ChaCha20 state.
 | |
| const (
 | |
| 	j0 uint32 = 0x61707865 // expa
 | |
| 	j1 uint32 = 0x3320646e // nd 3
 | |
| 	j2 uint32 = 0x79622d32 // 2-by
 | |
| 	j3 uint32 = 0x6b206574 // te k
 | |
| )
 | |
| 
 | |
| const blockSize = 64
 | |
| 
 | |
| // quarterRound is the core of ChaCha20. It shuffles the bits of 4 state words.
 | |
| // It's executed 4 times for each of the 20 ChaCha20 rounds, operating on all 16
 | |
| // words each round, in columnar or diagonal groups of 4 at a time.
 | |
| func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
 | |
| 	a += b
 | |
| 	d ^= a
 | |
| 	d = bits.RotateLeft32(d, 16)
 | |
| 	c += d
 | |
| 	b ^= c
 | |
| 	b = bits.RotateLeft32(b, 12)
 | |
| 	a += b
 | |
| 	d ^= a
 | |
| 	d = bits.RotateLeft32(d, 8)
 | |
| 	c += d
 | |
| 	b ^= c
 | |
| 	b = bits.RotateLeft32(b, 7)
 | |
| 	return a, b, c, d
 | |
| }
 | |
| 
 | |
| // SetCounter sets the Cipher counter. The next invocation of XORKeyStream will
 | |
| // behave as if (64 * counter) bytes had been encrypted so far.
 | |
| //
 | |
| // To prevent accidental counter reuse, SetCounter panics if counter is less
 | |
| // than the current value.
 | |
| //
 | |
| // Note that the execution time of XORKeyStream is not independent of the
 | |
| // counter value.
 | |
| func (s *Cipher) SetCounter(counter uint32) {
 | |
| 	// Internally, s may buffer multiple blocks, which complicates this
 | |
| 	// implementation slightly. When checking whether the counter has rolled
 | |
| 	// back, we must use both s.counter and s.len to determine how many blocks
 | |
| 	// we have already output.
 | |
| 	outputCounter := s.counter - uint32(s.len)/blockSize
 | |
| 	if s.overflow || counter < outputCounter {
 | |
| 		panic("chacha20: SetCounter attempted to rollback counter")
 | |
| 	}
 | |
| 
 | |
| 	// In the general case, we set the new counter value and reset s.len to 0,
 | |
| 	// causing the next call to XORKeyStream to refill the buffer. However, if
 | |
| 	// we're advancing within the existing buffer, we can save work by simply
 | |
| 	// setting s.len.
 | |
| 	if counter < s.counter {
 | |
| 		s.len = int(s.counter-counter) * blockSize
 | |
| 	} else {
 | |
| 		s.counter = counter
 | |
| 		s.len = 0
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // XORKeyStream XORs each byte in the given slice with a byte from the
 | |
| // cipher's key stream. Dst and src must overlap entirely or not at all.
 | |
| //
 | |
| // If len(dst) < len(src), XORKeyStream will panic. It is acceptable
 | |
| // to pass a dst bigger than src, and in that case, XORKeyStream will
 | |
| // only update dst[:len(src)] and will not touch the rest of dst.
 | |
| //
 | |
| // Multiple calls to XORKeyStream behave as if the concatenation of
 | |
| // the src buffers was passed in a single run. That is, Cipher
 | |
| // maintains state and does not reset at each XORKeyStream call.
 | |
| func (s *Cipher) XORKeyStream(dst, src []byte) {
 | |
| 	if len(src) == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 	if len(dst) < len(src) {
 | |
| 		panic("chacha20: output smaller than input")
 | |
| 	}
 | |
| 	dst = dst[:len(src)]
 | |
| 	if alias.InexactOverlap(dst, src) {
 | |
| 		panic("chacha20: invalid buffer overlap")
 | |
| 	}
 | |
| 
 | |
| 	// First, drain any remaining key stream from a previous XORKeyStream.
 | |
| 	if s.len != 0 {
 | |
| 		keyStream := s.buf[bufSize-s.len:]
 | |
| 		if len(src) < len(keyStream) {
 | |
| 			keyStream = keyStream[:len(src)]
 | |
| 		}
 | |
| 		_ = src[len(keyStream)-1] // bounds check elimination hint
 | |
| 		for i, b := range keyStream {
 | |
| 			dst[i] = src[i] ^ b
 | |
| 		}
 | |
| 		s.len -= len(keyStream)
 | |
| 		dst, src = dst[len(keyStream):], src[len(keyStream):]
 | |
| 	}
 | |
| 	if len(src) == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// If we'd need to let the counter overflow and keep generating output,
 | |
| 	// panic immediately. If instead we'd only reach the last block, remember
 | |
| 	// not to generate any more output after the buffer is drained.
 | |
| 	numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize
 | |
| 	if s.overflow || uint64(s.counter)+numBlocks > 1<<32 {
 | |
| 		panic("chacha20: counter overflow")
 | |
| 	} else if uint64(s.counter)+numBlocks == 1<<32 {
 | |
| 		s.overflow = true
 | |
| 	}
 | |
| 
 | |
| 	// xorKeyStreamBlocks implementations expect input lengths that are a
 | |
| 	// multiple of bufSize. Platform-specific ones process multiple blocks at a
 | |
| 	// time, so have bufSizes that are a multiple of blockSize.
 | |
| 
 | |
| 	full := len(src) - len(src)%bufSize
 | |
| 	if full > 0 {
 | |
| 		s.xorKeyStreamBlocks(dst[:full], src[:full])
 | |
| 	}
 | |
| 	dst, src = dst[full:], src[full:]
 | |
| 
 | |
| 	// If using a multi-block xorKeyStreamBlocks would overflow, use the generic
 | |
| 	// one that does one block at a time.
 | |
| 	const blocksPerBuf = bufSize / blockSize
 | |
| 	if uint64(s.counter)+blocksPerBuf > 1<<32 {
 | |
| 		s.buf = [bufSize]byte{}
 | |
| 		numBlocks := (len(src) + blockSize - 1) / blockSize
 | |
| 		buf := s.buf[bufSize-numBlocks*blockSize:]
 | |
| 		copy(buf, src)
 | |
| 		s.xorKeyStreamBlocksGeneric(buf, buf)
 | |
| 		s.len = len(buf) - copy(dst, buf)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and
 | |
| 	// keep the leftover keystream for the next XORKeyStream invocation.
 | |
| 	if len(src) > 0 {
 | |
| 		s.buf = [bufSize]byte{}
 | |
| 		copy(s.buf[:], src)
 | |
| 		s.xorKeyStreamBlocks(s.buf[:], s.buf[:])
 | |
| 		s.len = bufSize - copy(dst, s.buf[:])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
 | |
| 	if len(dst) != len(src) || len(dst)%blockSize != 0 {
 | |
| 		panic("chacha20: internal error: wrong dst and/or src length")
 | |
| 	}
 | |
| 
 | |
| 	// To generate each block of key stream, the initial cipher state
 | |
| 	// (represented below) is passed through 20 rounds of shuffling,
 | |
| 	// alternatively applying quarterRounds by columns (like 1, 5, 9, 13)
 | |
| 	// or by diagonals (like 1, 6, 11, 12).
 | |
| 	//
 | |
| 	//      0:cccccccc   1:cccccccc   2:cccccccc   3:cccccccc
 | |
| 	//      4:kkkkkkkk   5:kkkkkkkk   6:kkkkkkkk   7:kkkkkkkk
 | |
| 	//      8:kkkkkkkk   9:kkkkkkkk  10:kkkkkkkk  11:kkkkkkkk
 | |
| 	//     12:bbbbbbbb  13:nnnnnnnn  14:nnnnnnnn  15:nnnnnnnn
 | |
| 	//
 | |
| 	//            c=constant k=key b=blockcount n=nonce
 | |
| 	var (
 | |
| 		c0, c1, c2, c3   = j0, j1, j2, j3
 | |
| 		c4, c5, c6, c7   = s.key[0], s.key[1], s.key[2], s.key[3]
 | |
| 		c8, c9, c10, c11 = s.key[4], s.key[5], s.key[6], s.key[7]
 | |
| 		_, c13, c14, c15 = s.counter, s.nonce[0], s.nonce[1], s.nonce[2]
 | |
| 	)
 | |
| 
 | |
| 	// Three quarters of the first round don't depend on the counter, so we can
 | |
| 	// calculate them here, and reuse them for multiple blocks in the loop, and
 | |
| 	// for future XORKeyStream invocations.
 | |
| 	if !s.precompDone {
 | |
| 		s.p1, s.p5, s.p9, s.p13 = quarterRound(c1, c5, c9, c13)
 | |
| 		s.p2, s.p6, s.p10, s.p14 = quarterRound(c2, c6, c10, c14)
 | |
| 		s.p3, s.p7, s.p11, s.p15 = quarterRound(c3, c7, c11, c15)
 | |
| 		s.precompDone = true
 | |
| 	}
 | |
| 
 | |
| 	// A condition of len(src) > 0 would be sufficient, but this also
 | |
| 	// acts as a bounds check elimination hint.
 | |
| 	for len(src) >= 64 && len(dst) >= 64 {
 | |
| 		// The remainder of the first column round.
 | |
| 		fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter)
 | |
| 
 | |
| 		// The second diagonal round.
 | |
| 		x0, x5, x10, x15 := quarterRound(fcr0, s.p5, s.p10, s.p15)
 | |
| 		x1, x6, x11, x12 := quarterRound(s.p1, s.p6, s.p11, fcr12)
 | |
| 		x2, x7, x8, x13 := quarterRound(s.p2, s.p7, fcr8, s.p13)
 | |
| 		x3, x4, x9, x14 := quarterRound(s.p3, fcr4, s.p9, s.p14)
 | |
| 
 | |
| 		// The remaining 18 rounds.
 | |
| 		for i := 0; i < 9; i++ {
 | |
| 			// Column round.
 | |
| 			x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
 | |
| 			x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
 | |
| 			x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
 | |
| 			x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
 | |
| 
 | |
| 			// Diagonal round.
 | |
| 			x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
 | |
| 			x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
 | |
| 			x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
 | |
| 			x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
 | |
| 		}
 | |
| 
 | |
| 		// Add back the initial state to generate the key stream, then
 | |
| 		// XOR the key stream with the source and write out the result.
 | |
| 		addXor(dst[0:4], src[0:4], x0, c0)
 | |
| 		addXor(dst[4:8], src[4:8], x1, c1)
 | |
| 		addXor(dst[8:12], src[8:12], x2, c2)
 | |
| 		addXor(dst[12:16], src[12:16], x3, c3)
 | |
| 		addXor(dst[16:20], src[16:20], x4, c4)
 | |
| 		addXor(dst[20:24], src[20:24], x5, c5)
 | |
| 		addXor(dst[24:28], src[24:28], x6, c6)
 | |
| 		addXor(dst[28:32], src[28:32], x7, c7)
 | |
| 		addXor(dst[32:36], src[32:36], x8, c8)
 | |
| 		addXor(dst[36:40], src[36:40], x9, c9)
 | |
| 		addXor(dst[40:44], src[40:44], x10, c10)
 | |
| 		addXor(dst[44:48], src[44:48], x11, c11)
 | |
| 		addXor(dst[48:52], src[48:52], x12, s.counter)
 | |
| 		addXor(dst[52:56], src[52:56], x13, c13)
 | |
| 		addXor(dst[56:60], src[56:60], x14, c14)
 | |
| 		addXor(dst[60:64], src[60:64], x15, c15)
 | |
| 
 | |
| 		s.counter += 1
 | |
| 
 | |
| 		src, dst = src[blockSize:], dst[blockSize:]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // HChaCha20 uses the ChaCha20 core to generate a derived key from a 32 bytes
 | |
| // key and a 16 bytes nonce. It returns an error if key or nonce have any other
 | |
| // length. It is used as part of the XChaCha20 construction.
 | |
| func HChaCha20(key, nonce []byte) ([]byte, error) {
 | |
| 	// This function is split into a wrapper so that the slice allocation will
 | |
| 	// be inlined, and depending on how the caller uses the return value, won't
 | |
| 	// escape to the heap.
 | |
| 	out := make([]byte, 32)
 | |
| 	return hChaCha20(out, key, nonce)
 | |
| }
 | |
| 
 | |
| func hChaCha20(out, key, nonce []byte) ([]byte, error) {
 | |
| 	if len(key) != KeySize {
 | |
| 		return nil, errors.New("chacha20: wrong HChaCha20 key size")
 | |
| 	}
 | |
| 	if len(nonce) != 16 {
 | |
| 		return nil, errors.New("chacha20: wrong HChaCha20 nonce size")
 | |
| 	}
 | |
| 
 | |
| 	x0, x1, x2, x3 := j0, j1, j2, j3
 | |
| 	x4 := binary.LittleEndian.Uint32(key[0:4])
 | |
| 	x5 := binary.LittleEndian.Uint32(key[4:8])
 | |
| 	x6 := binary.LittleEndian.Uint32(key[8:12])
 | |
| 	x7 := binary.LittleEndian.Uint32(key[12:16])
 | |
| 	x8 := binary.LittleEndian.Uint32(key[16:20])
 | |
| 	x9 := binary.LittleEndian.Uint32(key[20:24])
 | |
| 	x10 := binary.LittleEndian.Uint32(key[24:28])
 | |
| 	x11 := binary.LittleEndian.Uint32(key[28:32])
 | |
| 	x12 := binary.LittleEndian.Uint32(nonce[0:4])
 | |
| 	x13 := binary.LittleEndian.Uint32(nonce[4:8])
 | |
| 	x14 := binary.LittleEndian.Uint32(nonce[8:12])
 | |
| 	x15 := binary.LittleEndian.Uint32(nonce[12:16])
 | |
| 
 | |
| 	for i := 0; i < 10; i++ {
 | |
| 		// Diagonal round.
 | |
| 		x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
 | |
| 		x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
 | |
| 		x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
 | |
| 		x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
 | |
| 
 | |
| 		// Column round.
 | |
| 		x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
 | |
| 		x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
 | |
| 		x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
 | |
| 		x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
 | |
| 	}
 | |
| 
 | |
| 	_ = out[31] // bounds check elimination hint
 | |
| 	binary.LittleEndian.PutUint32(out[0:4], x0)
 | |
| 	binary.LittleEndian.PutUint32(out[4:8], x1)
 | |
| 	binary.LittleEndian.PutUint32(out[8:12], x2)
 | |
| 	binary.LittleEndian.PutUint32(out[12:16], x3)
 | |
| 	binary.LittleEndian.PutUint32(out[16:20], x12)
 | |
| 	binary.LittleEndian.PutUint32(out[20:24], x13)
 | |
| 	binary.LittleEndian.PutUint32(out[24:28], x14)
 | |
| 	binary.LittleEndian.PutUint32(out[28:32], x15)
 | |
| 	return out, nil
 | |
| }
 |