forked from toolshed/abra
		
	
		
			
				
	
	
		
			213 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| /*
 | |
|  *
 | |
|  * Copyright 2014 gRPC authors.
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| package transport
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| 	"sync"
 | |
| 	"sync/atomic"
 | |
| )
 | |
| 
 | |
| // writeQuota is a soft limit on the amount of data a stream can
 | |
| // schedule before some of it is written out.
 | |
| type writeQuota struct {
 | |
| 	quota int32
 | |
| 	// get waits on read from when quota goes less than or equal to zero.
 | |
| 	// replenish writes on it when quota goes positive again.
 | |
| 	ch chan struct{}
 | |
| 	// done is triggered in error case.
 | |
| 	done <-chan struct{}
 | |
| 	// replenish is called by loopyWriter to give quota back to.
 | |
| 	// It is implemented as a field so that it can be updated
 | |
| 	// by tests.
 | |
| 	replenish func(n int)
 | |
| }
 | |
| 
 | |
| func newWriteQuota(sz int32, done <-chan struct{}) *writeQuota {
 | |
| 	w := &writeQuota{
 | |
| 		quota: sz,
 | |
| 		ch:    make(chan struct{}, 1),
 | |
| 		done:  done,
 | |
| 	}
 | |
| 	w.replenish = w.realReplenish
 | |
| 	return w
 | |
| }
 | |
| 
 | |
| func (w *writeQuota) get(sz int32) error {
 | |
| 	for {
 | |
| 		if atomic.LoadInt32(&w.quota) > 0 {
 | |
| 			atomic.AddInt32(&w.quota, -sz)
 | |
| 			return nil
 | |
| 		}
 | |
| 		select {
 | |
| 		case <-w.ch:
 | |
| 			continue
 | |
| 		case <-w.done:
 | |
| 			return errStreamDone
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (w *writeQuota) realReplenish(n int) {
 | |
| 	sz := int32(n)
 | |
| 	a := atomic.AddInt32(&w.quota, sz)
 | |
| 	b := a - sz
 | |
| 	if b <= 0 && a > 0 {
 | |
| 		select {
 | |
| 		case w.ch <- struct{}{}:
 | |
| 		default:
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type trInFlow struct {
 | |
| 	limit               uint32
 | |
| 	unacked             uint32
 | |
| 	effectiveWindowSize uint32
 | |
| }
 | |
| 
 | |
| func (f *trInFlow) newLimit(n uint32) uint32 {
 | |
| 	d := n - f.limit
 | |
| 	f.limit = n
 | |
| 	f.updateEffectiveWindowSize()
 | |
| 	return d
 | |
| }
 | |
| 
 | |
| func (f *trInFlow) onData(n uint32) uint32 {
 | |
| 	f.unacked += n
 | |
| 	if f.unacked < f.limit/4 {
 | |
| 		f.updateEffectiveWindowSize()
 | |
| 		return 0
 | |
| 	}
 | |
| 	return f.reset()
 | |
| }
 | |
| 
 | |
| func (f *trInFlow) reset() uint32 {
 | |
| 	w := f.unacked
 | |
| 	f.unacked = 0
 | |
| 	f.updateEffectiveWindowSize()
 | |
| 	return w
 | |
| }
 | |
| 
 | |
| func (f *trInFlow) updateEffectiveWindowSize() {
 | |
| 	atomic.StoreUint32(&f.effectiveWindowSize, f.limit-f.unacked)
 | |
| }
 | |
| 
 | |
| func (f *trInFlow) getSize() uint32 {
 | |
| 	return atomic.LoadUint32(&f.effectiveWindowSize)
 | |
| }
 | |
| 
 | |
| // TODO(mmukhi): Simplify this code.
 | |
| // inFlow deals with inbound flow control
 | |
| type inFlow struct {
 | |
| 	mu sync.Mutex
 | |
| 	// The inbound flow control limit for pending data.
 | |
| 	limit uint32
 | |
| 	// pendingData is the overall data which have been received but not been
 | |
| 	// consumed by applications.
 | |
| 	pendingData uint32
 | |
| 	// The amount of data the application has consumed but grpc has not sent
 | |
| 	// window update for them. Used to reduce window update frequency.
 | |
| 	pendingUpdate uint32
 | |
| 	// delta is the extra window update given by receiver when an application
 | |
| 	// is reading data bigger in size than the inFlow limit.
 | |
| 	delta uint32
 | |
| }
 | |
| 
 | |
| // newLimit updates the inflow window to a new value n.
 | |
| // It assumes that n is always greater than the old limit.
 | |
| func (f *inFlow) newLimit(n uint32) {
 | |
| 	f.mu.Lock()
 | |
| 	f.limit = n
 | |
| 	f.mu.Unlock()
 | |
| }
 | |
| 
 | |
| func (f *inFlow) maybeAdjust(n uint32) uint32 {
 | |
| 	if n > uint32(math.MaxInt32) {
 | |
| 		n = uint32(math.MaxInt32)
 | |
| 	}
 | |
| 	f.mu.Lock()
 | |
| 	defer f.mu.Unlock()
 | |
| 	// estSenderQuota is the receiver's view of the maximum number of bytes the sender
 | |
| 	// can send without a window update.
 | |
| 	estSenderQuota := int32(f.limit - (f.pendingData + f.pendingUpdate))
 | |
| 	// estUntransmittedData is the maximum number of bytes the sends might not have put
 | |
| 	// on the wire yet. A value of 0 or less means that we have already received all or
 | |
| 	// more bytes than the application is requesting to read.
 | |
| 	estUntransmittedData := int32(n - f.pendingData) // Casting into int32 since it could be negative.
 | |
| 	// This implies that unless we send a window update, the sender won't be able to send all the bytes
 | |
| 	// for this message. Therefore we must send an update over the limit since there's an active read
 | |
| 	// request from the application.
 | |
| 	if estUntransmittedData > estSenderQuota {
 | |
| 		// Sender's window shouldn't go more than 2^31 - 1 as specified in the HTTP spec.
 | |
| 		if f.limit+n > maxWindowSize {
 | |
| 			f.delta = maxWindowSize - f.limit
 | |
| 		} else {
 | |
| 			// Send a window update for the whole message and not just the difference between
 | |
| 			// estUntransmittedData and estSenderQuota. This will be helpful in case the message
 | |
| 			// is padded; We will fallback on the current available window(at least a 1/4th of the limit).
 | |
| 			f.delta = n
 | |
| 		}
 | |
| 		return f.delta
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // onData is invoked when some data frame is received. It updates pendingData.
 | |
| func (f *inFlow) onData(n uint32) error {
 | |
| 	f.mu.Lock()
 | |
| 	f.pendingData += n
 | |
| 	if f.pendingData+f.pendingUpdate > f.limit+f.delta {
 | |
| 		limit := f.limit
 | |
| 		rcvd := f.pendingData + f.pendingUpdate
 | |
| 		f.mu.Unlock()
 | |
| 		return fmt.Errorf("received %d-bytes data exceeding the limit %d bytes", rcvd, limit)
 | |
| 	}
 | |
| 	f.mu.Unlock()
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // onRead is invoked when the application reads the data. It returns the window size
 | |
| // to be sent to the peer.
 | |
| func (f *inFlow) onRead(n uint32) uint32 {
 | |
| 	f.mu.Lock()
 | |
| 	if f.pendingData == 0 {
 | |
| 		f.mu.Unlock()
 | |
| 		return 0
 | |
| 	}
 | |
| 	f.pendingData -= n
 | |
| 	if n > f.delta {
 | |
| 		n -= f.delta
 | |
| 		f.delta = 0
 | |
| 	} else {
 | |
| 		f.delta -= n
 | |
| 		n = 0
 | |
| 	}
 | |
| 	f.pendingUpdate += n
 | |
| 	if f.pendingUpdate >= f.limit/4 {
 | |
| 		wu := f.pendingUpdate
 | |
| 		f.pendingUpdate = 0
 | |
| 		f.mu.Unlock()
 | |
| 		return wu
 | |
| 	}
 | |
| 	f.mu.Unlock()
 | |
| 	return 0
 | |
| }
 |