forked from toolshed/abra
		
	
		
			
				
	
	
		
			165 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Package fp448 provides prime field arithmetic over GF(2^448-2^224-1).
 | |
| package fp448
 | |
| 
 | |
| import (
 | |
| 	"errors"
 | |
| 
 | |
| 	"github.com/cloudflare/circl/internal/conv"
 | |
| )
 | |
| 
 | |
| // Size in bytes of an element.
 | |
| const Size = 56
 | |
| 
 | |
| // Elt is a prime field element.
 | |
| type Elt [Size]byte
 | |
| 
 | |
| func (e Elt) String() string { return conv.BytesLe2Hex(e[:]) }
 | |
| 
 | |
| // p is the prime modulus 2^448-2^224-1.
 | |
| var p = Elt{
 | |
| 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 	0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
 | |
| 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| }
 | |
| 
 | |
| // P returns the prime modulus 2^448-2^224-1.
 | |
| func P() Elt { return p }
 | |
| 
 | |
| // ToBytes stores in b the little-endian byte representation of x.
 | |
| func ToBytes(b []byte, x *Elt) error {
 | |
| 	if len(b) != Size {
 | |
| 		return errors.New("wrong size")
 | |
| 	}
 | |
| 	Modp(x)
 | |
| 	copy(b, x[:])
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // IsZero returns true if x is equal to 0.
 | |
| func IsZero(x *Elt) bool { Modp(x); return *x == Elt{} }
 | |
| 
 | |
| // IsOne returns true if x is equal to 1.
 | |
| func IsOne(x *Elt) bool { Modp(x); return *x == Elt{1} }
 | |
| 
 | |
| // SetOne assigns x=1.
 | |
| func SetOne(x *Elt) { *x = Elt{1} }
 | |
| 
 | |
| // One returns the 1 element.
 | |
| func One() (x Elt) { x = Elt{1}; return }
 | |
| 
 | |
| // Neg calculates z = -x.
 | |
| func Neg(z, x *Elt) { Sub(z, &p, x) }
 | |
| 
 | |
| // Modp ensures that z is between [0,p-1].
 | |
| func Modp(z *Elt) { Sub(z, z, &p) }
 | |
| 
 | |
| // InvSqrt calculates z = sqrt(x/y) iff x/y is a quadratic-residue. If so,
 | |
| // isQR = true; otherwise, isQR = false, since x/y is a quadratic non-residue,
 | |
| // and z = sqrt(-x/y).
 | |
| func InvSqrt(z, x, y *Elt) (isQR bool) {
 | |
| 	// First note that x^(2(k+1)) = x^(p-1)/2 * x = legendre(x) * x
 | |
| 	// so that's x if x is a quadratic residue and -x otherwise.
 | |
| 	// Next, y^(6k+3) = y^(4k+2) * y^(2k+1) = y^(p-1) * y^((p-1)/2) = legendre(y).
 | |
| 	// So the z we compute satisfies z^2 y = x^(2(k+1)) y^(6k+3) = legendre(x)*legendre(y).
 | |
| 	// Thus if x and y are quadratic residues, then z is indeed sqrt(x/y).
 | |
| 	t0, t1 := &Elt{}, &Elt{}
 | |
| 	Mul(t0, x, y)         // x*y
 | |
| 	Sqr(t1, y)            // y^2
 | |
| 	Mul(t1, t0, t1)       // x*y^3
 | |
| 	powPminus3div4(z, t1) // (x*y^3)^k
 | |
| 	Mul(z, z, t0)         // z = x*y*(x*y^3)^k = x^(k+1) * y^(3k+1)
 | |
| 
 | |
| 	// Check if x/y is a quadratic residue
 | |
| 	Sqr(t0, z)     // z^2
 | |
| 	Mul(t0, t0, y) // y*z^2
 | |
| 	Sub(t0, t0, x) // y*z^2-x
 | |
| 	return IsZero(t0)
 | |
| }
 | |
| 
 | |
| // Inv calculates z = 1/x mod p.
 | |
| func Inv(z, x *Elt) {
 | |
| 	// Calculates z = x^(4k+1) = x^(p-3+1) = x^(p-2) = x^-1, where k = (p-3)/4.
 | |
| 	t := &Elt{}
 | |
| 	powPminus3div4(t, x) // t = x^k
 | |
| 	Sqr(t, t)            // t = x^2k
 | |
| 	Sqr(t, t)            // t = x^4k
 | |
| 	Mul(z, t, x)         // z = x^(4k+1)
 | |
| }
 | |
| 
 | |
| // powPminus3div4 calculates z = x^k mod p, where k = (p-3)/4.
 | |
| func powPminus3div4(z, x *Elt) {
 | |
| 	x0, x1 := &Elt{}, &Elt{}
 | |
| 	Sqr(z, x)
 | |
| 	Mul(z, z, x)
 | |
| 	Sqr(x0, z)
 | |
| 	Mul(x0, x0, x)
 | |
| 	Sqr(z, x0)
 | |
| 	Sqr(z, z)
 | |
| 	Sqr(z, z)
 | |
| 	Mul(z, z, x0)
 | |
| 	Sqr(x1, z)
 | |
| 	for i := 0; i < 5; i++ {
 | |
| 		Sqr(x1, x1)
 | |
| 	}
 | |
| 	Mul(x1, x1, z)
 | |
| 	Sqr(z, x1)
 | |
| 	for i := 0; i < 11; i++ {
 | |
| 		Sqr(z, z)
 | |
| 	}
 | |
| 	Mul(z, z, x1)
 | |
| 	Sqr(z, z)
 | |
| 	Sqr(z, z)
 | |
| 	Sqr(z, z)
 | |
| 	Mul(z, z, x0)
 | |
| 	Sqr(x1, z)
 | |
| 	for i := 0; i < 26; i++ {
 | |
| 		Sqr(x1, x1)
 | |
| 	}
 | |
| 	Mul(x1, x1, z)
 | |
| 	Sqr(z, x1)
 | |
| 	for i := 0; i < 53; i++ {
 | |
| 		Sqr(z, z)
 | |
| 	}
 | |
| 	Mul(z, z, x1)
 | |
| 	Sqr(z, z)
 | |
| 	Sqr(z, z)
 | |
| 	Sqr(z, z)
 | |
| 	Mul(z, z, x0)
 | |
| 	Sqr(x1, z)
 | |
| 	for i := 0; i < 110; i++ {
 | |
| 		Sqr(x1, x1)
 | |
| 	}
 | |
| 	Mul(x1, x1, z)
 | |
| 	Sqr(z, x1)
 | |
| 	Mul(z, z, x)
 | |
| 	for i := 0; i < 223; i++ {
 | |
| 		Sqr(z, z)
 | |
| 	}
 | |
| 	Mul(z, z, x1)
 | |
| }
 | |
| 
 | |
| // Cmov assigns y to x if n is 1.
 | |
| func Cmov(x, y *Elt, n uint) { cmov(x, y, n) }
 | |
| 
 | |
| // Cswap interchanges x and y if n is 1.
 | |
| func Cswap(x, y *Elt, n uint) { cswap(x, y, n) }
 | |
| 
 | |
| // Add calculates z = x+y mod p.
 | |
| func Add(z, x, y *Elt) { add(z, x, y) }
 | |
| 
 | |
| // Sub calculates z = x-y mod p.
 | |
| func Sub(z, x, y *Elt) { sub(z, x, y) }
 | |
| 
 | |
| // AddSub calculates (x,y) = (x+y mod p, x-y mod p).
 | |
| func AddSub(x, y *Elt) { addsub(x, y) }
 | |
| 
 | |
| // Mul calculates z = x*y mod p.
 | |
| func Mul(z, x, y *Elt) { mul(z, x, y) }
 | |
| 
 | |
| // Sqr calculates z = x^2 mod p.
 | |
| func Sqr(z, x *Elt) { sqr(z, x) }
 |