forked from toolshed/abra
We were running behind and there were quite some deprecations to update. This was mostly in the upstream copy/pasta package but seems quite minimal.
1458 lines
38 KiB
Go
1458 lines
38 KiB
Go
package cellbuf
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"io"
|
|
"os"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/charmbracelet/colorprofile"
|
|
"github.com/charmbracelet/x/ansi"
|
|
"github.com/charmbracelet/x/term"
|
|
)
|
|
|
|
// ErrInvalidDimensions is returned when the dimensions of a window are invalid
|
|
// for the operation.
|
|
var ErrInvalidDimensions = errors.New("invalid dimensions")
|
|
|
|
// notLocal returns whether the coordinates are not considered local movement
|
|
// using the defined thresholds.
|
|
// This takes the number of columns, and the coordinates of the current and
|
|
// target positions.
|
|
func notLocal(cols, fx, fy, tx, ty int) bool {
|
|
// The typical distance for a [ansi.CUP] sequence. Anything less than this
|
|
// is considered local movement.
|
|
const longDist = 8 - 1
|
|
return (tx > longDist) &&
|
|
(tx < cols-1-longDist) &&
|
|
(abs(ty-fy)+abs(tx-fx) > longDist)
|
|
}
|
|
|
|
// relativeCursorMove returns the relative cursor movement sequence using one or two
|
|
// of the following sequences [ansi.CUU], [ansi.CUD], [ansi.CUF], [ansi.CUB],
|
|
// [ansi.VPA], [ansi.HPA].
|
|
// When overwrite is true, this will try to optimize the sequence by using the
|
|
// screen cells values to move the cursor instead of using escape sequences.
|
|
func relativeCursorMove(s *Screen, fx, fy, tx, ty int, overwrite, useTabs, useBackspace bool) string {
|
|
var seq strings.Builder
|
|
|
|
width, height := s.newbuf.Width(), s.newbuf.Height()
|
|
if ty != fy {
|
|
var yseq string
|
|
if s.xtermLike && !s.opts.RelativeCursor {
|
|
yseq = ansi.VerticalPositionAbsolute(ty + 1)
|
|
}
|
|
|
|
// OPTIM: Use [ansi.LF] and [ansi.ReverseIndex] as optimizations.
|
|
|
|
if ty > fy {
|
|
n := ty - fy
|
|
if cud := ansi.CursorDown(n); yseq == "" || len(cud) < len(yseq) {
|
|
yseq = cud
|
|
}
|
|
shouldScroll := !s.opts.AltScreen && fy+n >= s.scrollHeight
|
|
if lf := strings.Repeat("\n", n); shouldScroll || (fy+n < height && len(lf) < len(yseq)) {
|
|
// TODO: Ensure we're not unintentionally scrolling the screen down.
|
|
yseq = lf
|
|
s.scrollHeight = max(s.scrollHeight, fy+n)
|
|
}
|
|
} else if ty < fy {
|
|
n := fy - ty
|
|
if cuu := ansi.CursorUp(n); yseq == "" || len(cuu) < len(yseq) {
|
|
yseq = cuu
|
|
}
|
|
if n == 1 && fy-1 > 0 {
|
|
// TODO: Ensure we're not unintentionally scrolling the screen up.
|
|
yseq = ansi.ReverseIndex
|
|
}
|
|
}
|
|
|
|
seq.WriteString(yseq)
|
|
}
|
|
|
|
if tx != fx {
|
|
var xseq string
|
|
if s.xtermLike && !s.opts.RelativeCursor {
|
|
xseq = ansi.HorizontalPositionAbsolute(tx + 1)
|
|
}
|
|
|
|
if tx > fx {
|
|
n := tx - fx
|
|
if useTabs {
|
|
var tabs int
|
|
var col int
|
|
for col = fx; s.tabs.Next(col) <= tx; col = s.tabs.Next(col) {
|
|
tabs++
|
|
if col == s.tabs.Next(col) || col >= width-1 {
|
|
break
|
|
}
|
|
}
|
|
|
|
if tabs > 0 {
|
|
cht := ansi.CursorHorizontalForwardTab(tabs)
|
|
tab := strings.Repeat("\t", tabs)
|
|
if false && s.xtermLike && len(cht) < len(tab) {
|
|
// TODO: The linux console and some terminals such as
|
|
// Alacritty don't support [ansi.CHT]. Enable this when
|
|
// we have a way to detect this, or after 5 years when
|
|
// we're sure everyone has updated their terminals :P
|
|
seq.WriteString(cht)
|
|
} else {
|
|
seq.WriteString(tab)
|
|
}
|
|
|
|
n = tx - col
|
|
fx = col
|
|
}
|
|
}
|
|
|
|
if cuf := ansi.CursorForward(n); xseq == "" || len(cuf) < len(xseq) {
|
|
xseq = cuf
|
|
}
|
|
|
|
// If we have no attribute and style changes, overwrite is cheaper.
|
|
var ovw string
|
|
if overwrite && ty >= 0 {
|
|
for i := 0; i < n; i++ {
|
|
cell := s.newbuf.Cell(fx+i, ty)
|
|
if cell != nil && cell.Width > 0 {
|
|
i += cell.Width - 1
|
|
if !cell.Style.Equal(&s.cur.Style) || !cell.Link.Equal(&s.cur.Link) {
|
|
overwrite = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if overwrite && ty >= 0 {
|
|
for i := 0; i < n; i++ {
|
|
cell := s.newbuf.Cell(fx+i, ty)
|
|
if cell != nil && cell.Width > 0 {
|
|
ovw += cell.String()
|
|
i += cell.Width - 1
|
|
} else {
|
|
ovw += " "
|
|
}
|
|
}
|
|
}
|
|
|
|
if overwrite && len(ovw) < len(xseq) {
|
|
xseq = ovw
|
|
}
|
|
} else if tx < fx {
|
|
n := fx - tx
|
|
if useTabs && s.xtermLike {
|
|
// VT100 does not support backward tabs [ansi.CBT].
|
|
|
|
col := fx
|
|
|
|
var cbt int // cursor backward tabs count
|
|
for s.tabs.Prev(col) >= tx {
|
|
col = s.tabs.Prev(col)
|
|
cbt++
|
|
if col == s.tabs.Prev(col) || col <= 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
if cbt > 0 {
|
|
seq.WriteString(ansi.CursorBackwardTab(cbt))
|
|
n = col - tx
|
|
}
|
|
}
|
|
|
|
if cub := ansi.CursorBackward(n); xseq == "" || len(cub) < len(xseq) {
|
|
xseq = cub
|
|
}
|
|
|
|
if useBackspace && n < len(xseq) {
|
|
xseq = strings.Repeat("\b", n)
|
|
}
|
|
}
|
|
|
|
seq.WriteString(xseq)
|
|
}
|
|
|
|
return seq.String()
|
|
}
|
|
|
|
// moveCursor moves and returns the cursor movement sequence to move the cursor
|
|
// to the specified position.
|
|
// When overwrite is true, this will try to optimize the sequence by using the
|
|
// screen cells values to move the cursor instead of using escape sequences.
|
|
func moveCursor(s *Screen, x, y int, overwrite bool) (seq string) {
|
|
fx, fy := s.cur.X, s.cur.Y
|
|
|
|
if !s.opts.RelativeCursor {
|
|
// Method #0: Use [ansi.CUP] if the distance is long.
|
|
seq = ansi.CursorPosition(x+1, y+1)
|
|
if fx == -1 || fy == -1 || notLocal(s.newbuf.Width(), fx, fy, x, y) {
|
|
return
|
|
}
|
|
}
|
|
|
|
// Optimize based on options.
|
|
trials := 0
|
|
if s.opts.HardTabs {
|
|
trials |= 2 // 0b10 in binary
|
|
}
|
|
if s.opts.Backspace {
|
|
trials |= 1 // 0b01 in binary
|
|
}
|
|
|
|
// Try all possible combinations of hard tabs and backspace optimizations.
|
|
for i := 0; i <= trials; i++ {
|
|
// Skip combinations that are not enabled.
|
|
if i & ^trials != 0 {
|
|
continue
|
|
}
|
|
|
|
useHardTabs := i&2 != 0
|
|
useBackspace := i&1 != 0
|
|
|
|
// Method #1: Use local movement sequences.
|
|
nseq := relativeCursorMove(s, fx, fy, x, y, overwrite, useHardTabs, useBackspace)
|
|
if (i == 0 && len(seq) == 0) || len(nseq) < len(seq) {
|
|
seq = nseq
|
|
}
|
|
|
|
// Method #2: Use [ansi.CR] and local movement sequences.
|
|
nseq = "\r" + relativeCursorMove(s, 0, fy, x, y, overwrite, useHardTabs, useBackspace)
|
|
if len(nseq) < len(seq) {
|
|
seq = nseq
|
|
}
|
|
|
|
if !s.opts.RelativeCursor {
|
|
// Method #3: Use [ansi.CursorHomePosition] and local movement sequences.
|
|
nseq = ansi.CursorHomePosition + relativeCursorMove(s, 0, 0, x, y, overwrite, useHardTabs, useBackspace)
|
|
if len(nseq) < len(seq) {
|
|
seq = nseq
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// moveCursor moves the cursor to the specified position.
|
|
func (s *Screen) moveCursor(x, y int, overwrite bool) {
|
|
if !s.opts.AltScreen && s.cur.X == -1 && s.cur.Y == -1 {
|
|
// First cursor movement in inline mode, move the cursor to the first
|
|
// column before moving to the target position.
|
|
s.buf.WriteByte('\r') //nolint:errcheck
|
|
s.cur.X, s.cur.Y = 0, 0
|
|
}
|
|
s.buf.WriteString(moveCursor(s, x, y, overwrite)) //nolint:errcheck
|
|
s.cur.X, s.cur.Y = x, y
|
|
}
|
|
|
|
func (s *Screen) move(x, y int) {
|
|
// XXX: Make sure we use the max height and width of the buffer in case
|
|
// we're in the middle of a resize operation.
|
|
width := max(s.newbuf.Width(), s.curbuf.Width())
|
|
height := max(s.newbuf.Height(), s.curbuf.Height())
|
|
|
|
if width > 0 && x >= width {
|
|
// Handle autowrap
|
|
y += (x / width)
|
|
x %= width
|
|
}
|
|
|
|
// XXX: Disable styles if there's any
|
|
// Some move operations such as [ansi.LF] can apply styles to the new
|
|
// cursor position, thus, we need to reset the styles before moving the
|
|
// cursor.
|
|
blank := s.clearBlank()
|
|
resetPen := y != s.cur.Y && !blank.Equal(&BlankCell)
|
|
if resetPen {
|
|
s.updatePen(nil)
|
|
}
|
|
|
|
// Reset wrap around (phantom cursor) state
|
|
if s.atPhantom {
|
|
s.cur.X = 0
|
|
s.buf.WriteByte('\r') //nolint:errcheck
|
|
s.atPhantom = false // reset phantom cell state
|
|
}
|
|
|
|
// TODO: Investigate if we need to handle this case and/or if we need the
|
|
// following code.
|
|
//
|
|
// if width > 0 && s.cur.X >= width {
|
|
// l := (s.cur.X + 1) / width
|
|
//
|
|
// s.cur.Y += l
|
|
// if height > 0 && s.cur.Y >= height {
|
|
// l -= s.cur.Y - height - 1
|
|
// }
|
|
//
|
|
// if l > 0 {
|
|
// s.cur.X = 0
|
|
// s.buf.WriteString("\r" + strings.Repeat("\n", l)) //nolint:errcheck
|
|
// }
|
|
// }
|
|
|
|
if height > 0 {
|
|
if s.cur.Y > height-1 {
|
|
s.cur.Y = height - 1
|
|
}
|
|
if y > height-1 {
|
|
y = height - 1
|
|
}
|
|
}
|
|
|
|
if x == s.cur.X && y == s.cur.Y {
|
|
// We give up later because we need to run checks for the phantom cell
|
|
// and others before we can determine if we can give up.
|
|
return
|
|
}
|
|
|
|
// We set the new cursor in [Screen.moveCursor].
|
|
s.moveCursor(x, y, true) // Overwrite cells if possible
|
|
}
|
|
|
|
// Cursor represents a terminal Cursor.
|
|
type Cursor struct {
|
|
Style
|
|
Link
|
|
Position
|
|
}
|
|
|
|
// ScreenOptions are options for the screen.
|
|
type ScreenOptions struct {
|
|
// Term is the terminal type to use when writing to the screen. When empty,
|
|
// `$TERM` is used from [os.Getenv].
|
|
Term string
|
|
// Profile is the color profile to use when writing to the screen.
|
|
Profile colorprofile.Profile
|
|
// RelativeCursor is whether to use relative cursor movements. This is
|
|
// useful when alt-screen is not used or when using inline mode.
|
|
RelativeCursor bool
|
|
// AltScreen is whether to use the alternate screen buffer.
|
|
AltScreen bool
|
|
// ShowCursor is whether to show the cursor.
|
|
ShowCursor bool
|
|
// HardTabs is whether to use hard tabs to optimize cursor movements.
|
|
HardTabs bool
|
|
// Backspace is whether to use backspace characters to move the cursor.
|
|
Backspace bool
|
|
}
|
|
|
|
// lineData represents the metadata for a line.
|
|
type lineData struct {
|
|
// first and last changed cell indices
|
|
firstCell, lastCell int
|
|
// old index used for scrolling
|
|
oldIndex int //nolint:unused
|
|
}
|
|
|
|
// Screen represents the terminal screen.
|
|
type Screen struct {
|
|
w io.Writer
|
|
buf *bytes.Buffer // buffer for writing to the screen
|
|
curbuf *Buffer // the current buffer
|
|
newbuf *Buffer // the new buffer
|
|
tabs *TabStops
|
|
touch map[int]lineData
|
|
queueAbove []string // the queue of strings to write above the screen
|
|
oldhash, newhash []uint64 // the old and new hash values for each line
|
|
hashtab []hashmap // the hashmap table
|
|
oldnum []int // old indices from previous hash
|
|
cur, saved Cursor // the current and saved cursors
|
|
opts ScreenOptions
|
|
mu sync.Mutex
|
|
method ansi.Method
|
|
scrollHeight int // keeps track of how many lines we've scrolled down (inline mode)
|
|
altScreenMode bool // whether alternate screen mode is enabled
|
|
cursorHidden bool // whether text cursor mode is enabled
|
|
clear bool // whether to force clear the screen
|
|
xtermLike bool // whether to use xterm-like optimizations, otherwise, it uses vt100 only
|
|
queuedText bool // whether we have queued non-zero width text queued up
|
|
atPhantom bool // whether the cursor is out of bounds and at a phantom cell
|
|
}
|
|
|
|
// SetMethod sets the method used to calculate the width of cells.
|
|
func (s *Screen) SetMethod(method ansi.Method) {
|
|
s.method = method
|
|
}
|
|
|
|
// UseBackspaces sets whether to use backspace characters to move the cursor.
|
|
func (s *Screen) UseBackspaces(v bool) {
|
|
s.opts.Backspace = v
|
|
}
|
|
|
|
// UseHardTabs sets whether to use hard tabs to optimize cursor movements.
|
|
func (s *Screen) UseHardTabs(v bool) {
|
|
s.opts.HardTabs = v
|
|
}
|
|
|
|
// SetColorProfile sets the color profile to use when writing to the screen.
|
|
func (s *Screen) SetColorProfile(p colorprofile.Profile) {
|
|
s.opts.Profile = p
|
|
}
|
|
|
|
// SetRelativeCursor sets whether to use relative cursor movements.
|
|
func (s *Screen) SetRelativeCursor(v bool) {
|
|
s.opts.RelativeCursor = v
|
|
}
|
|
|
|
// EnterAltScreen enters the alternate screen buffer.
|
|
func (s *Screen) EnterAltScreen() {
|
|
s.opts.AltScreen = true
|
|
s.clear = true
|
|
s.saved = s.cur
|
|
}
|
|
|
|
// ExitAltScreen exits the alternate screen buffer.
|
|
func (s *Screen) ExitAltScreen() {
|
|
s.opts.AltScreen = false
|
|
s.clear = true
|
|
s.cur = s.saved
|
|
}
|
|
|
|
// ShowCursor shows the cursor.
|
|
func (s *Screen) ShowCursor() {
|
|
s.opts.ShowCursor = true
|
|
}
|
|
|
|
// HideCursor hides the cursor.
|
|
func (s *Screen) HideCursor() {
|
|
s.opts.ShowCursor = false
|
|
}
|
|
|
|
// Bounds implements Window.
|
|
func (s *Screen) Bounds() Rectangle {
|
|
// Always return the new buffer bounds.
|
|
return s.newbuf.Bounds()
|
|
}
|
|
|
|
// Cell implements Window.
|
|
func (s *Screen) Cell(x int, y int) *Cell {
|
|
return s.newbuf.Cell(x, y)
|
|
}
|
|
|
|
// Redraw forces a full redraw of the screen.
|
|
func (s *Screen) Redraw() {
|
|
s.mu.Lock()
|
|
s.clear = true
|
|
s.mu.Unlock()
|
|
}
|
|
|
|
// Clear clears the screen with blank cells. This is a convenience method for
|
|
// [Screen.Fill] with a nil cell.
|
|
func (s *Screen) Clear() bool {
|
|
return s.ClearRect(s.newbuf.Bounds())
|
|
}
|
|
|
|
// ClearRect clears the given rectangle with blank cells. This is a convenience
|
|
// method for [Screen.FillRect] with a nil cell.
|
|
func (s *Screen) ClearRect(r Rectangle) bool {
|
|
return s.FillRect(nil, r)
|
|
}
|
|
|
|
// SetCell implements Window.
|
|
func (s *Screen) SetCell(x int, y int, cell *Cell) (v bool) {
|
|
s.mu.Lock()
|
|
defer s.mu.Unlock()
|
|
cellWidth := 1
|
|
if cell != nil {
|
|
cellWidth = cell.Width
|
|
}
|
|
if prev := s.curbuf.Cell(x, y); !cellEqual(prev, cell) {
|
|
chg, ok := s.touch[y]
|
|
if !ok {
|
|
chg = lineData{firstCell: x, lastCell: x + cellWidth}
|
|
} else {
|
|
chg.firstCell = min(chg.firstCell, x)
|
|
chg.lastCell = max(chg.lastCell, x+cellWidth)
|
|
}
|
|
s.touch[y] = chg
|
|
}
|
|
|
|
return s.newbuf.SetCell(x, y, cell)
|
|
}
|
|
|
|
// Fill implements Window.
|
|
func (s *Screen) Fill(cell *Cell) bool {
|
|
return s.FillRect(cell, s.newbuf.Bounds())
|
|
}
|
|
|
|
// FillRect implements Window.
|
|
func (s *Screen) FillRect(cell *Cell, r Rectangle) bool {
|
|
s.mu.Lock()
|
|
defer s.mu.Unlock()
|
|
s.newbuf.FillRect(cell, r)
|
|
for i := r.Min.Y; i < r.Max.Y; i++ {
|
|
s.touch[i] = lineData{firstCell: r.Min.X, lastCell: r.Max.X}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// isXtermLike returns whether the terminal is xterm-like. This means that the
|
|
// terminal supports ECMA-48 and ANSI X3.64 escape sequences.
|
|
// TODO: Should this be a lookup table into each $TERM terminfo database? Like
|
|
// we could keep a map of ANSI escape sequence to terminfo capability name and
|
|
// check if the database supports the escape sequence. Instead of keeping a
|
|
// list of terminal names here.
|
|
func isXtermLike(termtype string) (v bool) {
|
|
parts := strings.Split(termtype, "-")
|
|
if len(parts) == 0 {
|
|
return
|
|
}
|
|
|
|
switch parts[0] {
|
|
case
|
|
"alacritty",
|
|
"contour",
|
|
"foot",
|
|
"ghostty",
|
|
"kitty",
|
|
"linux",
|
|
"rio",
|
|
"screen",
|
|
"st",
|
|
"tmux",
|
|
"wezterm",
|
|
"xterm":
|
|
v = true
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// NewScreen creates a new Screen.
|
|
func NewScreen(w io.Writer, width, height int, opts *ScreenOptions) (s *Screen) {
|
|
s = new(Screen)
|
|
s.w = w
|
|
if opts != nil {
|
|
s.opts = *opts
|
|
}
|
|
|
|
if s.opts.Term == "" {
|
|
s.opts.Term = os.Getenv("TERM")
|
|
}
|
|
|
|
if width <= 0 || height <= 0 {
|
|
if f, ok := w.(term.File); ok {
|
|
width, height, _ = term.GetSize(f.Fd())
|
|
}
|
|
}
|
|
if width < 0 {
|
|
width = 0
|
|
}
|
|
if height < 0 {
|
|
height = 0
|
|
}
|
|
|
|
s.buf = new(bytes.Buffer)
|
|
s.xtermLike = isXtermLike(s.opts.Term)
|
|
s.curbuf = NewBuffer(width, height)
|
|
s.newbuf = NewBuffer(width, height)
|
|
s.cur = Cursor{Position: Pos(-1, -1)} // start at -1 to force a move
|
|
s.saved = s.cur
|
|
s.reset()
|
|
|
|
return
|
|
}
|
|
|
|
// Width returns the width of the screen.
|
|
func (s *Screen) Width() int {
|
|
return s.newbuf.Width()
|
|
}
|
|
|
|
// Height returns the height of the screen.
|
|
func (s *Screen) Height() int {
|
|
return s.newbuf.Height()
|
|
}
|
|
|
|
// cellEqual returns whether the two cells are equal. A nil cell is considered
|
|
// a [BlankCell].
|
|
func cellEqual(a, b *Cell) bool {
|
|
if a == b {
|
|
return true
|
|
}
|
|
if a == nil {
|
|
a = &BlankCell
|
|
}
|
|
if b == nil {
|
|
b = &BlankCell
|
|
}
|
|
return a.Equal(b)
|
|
}
|
|
|
|
// putCell draws a cell at the current cursor position.
|
|
func (s *Screen) putCell(cell *Cell) {
|
|
width, height := s.newbuf.Width(), s.newbuf.Height()
|
|
if s.opts.AltScreen && s.cur.X == width-1 && s.cur.Y == height-1 {
|
|
s.putCellLR(cell)
|
|
} else {
|
|
s.putAttrCell(cell)
|
|
}
|
|
}
|
|
|
|
// wrapCursor wraps the cursor to the next line.
|
|
//
|
|
//nolint:unused
|
|
func (s *Screen) wrapCursor() {
|
|
const autoRightMargin = true
|
|
if autoRightMargin {
|
|
// Assume we have auto wrap mode enabled.
|
|
s.cur.X = 0
|
|
s.cur.Y++
|
|
} else {
|
|
s.cur.X--
|
|
}
|
|
}
|
|
|
|
func (s *Screen) putAttrCell(cell *Cell) {
|
|
if cell != nil && cell.Empty() {
|
|
// XXX: Zero width cells are special and should not be written to the
|
|
// screen no matter what other attributes they have.
|
|
// Zero width cells are used for wide characters that are split into
|
|
// multiple cells.
|
|
return
|
|
}
|
|
|
|
if cell == nil {
|
|
cell = s.clearBlank()
|
|
}
|
|
|
|
// We're at pending wrap state (phantom cell), incoming cell should
|
|
// wrap.
|
|
if s.atPhantom {
|
|
s.wrapCursor()
|
|
s.atPhantom = false
|
|
}
|
|
|
|
s.updatePen(cell)
|
|
s.buf.WriteRune(cell.Rune) //nolint:errcheck
|
|
for _, c := range cell.Comb {
|
|
s.buf.WriteRune(c) //nolint:errcheck
|
|
}
|
|
|
|
s.cur.X += cell.Width
|
|
|
|
if cell.Width > 0 {
|
|
s.queuedText = true
|
|
}
|
|
|
|
if s.cur.X >= s.newbuf.Width() {
|
|
s.atPhantom = true
|
|
}
|
|
}
|
|
|
|
// putCellLR draws a cell at the lower right corner of the screen.
|
|
func (s *Screen) putCellLR(cell *Cell) {
|
|
// Optimize for the lower right corner cell.
|
|
curX := s.cur.X
|
|
if cell == nil || !cell.Empty() {
|
|
s.buf.WriteString(ansi.ResetAutoWrapMode) //nolint:errcheck
|
|
s.putAttrCell(cell)
|
|
// Writing to lower-right corner cell should not wrap.
|
|
s.atPhantom = false
|
|
s.cur.X = curX
|
|
s.buf.WriteString(ansi.SetAutoWrapMode) //nolint:errcheck
|
|
}
|
|
}
|
|
|
|
// updatePen updates the cursor pen styles.
|
|
func (s *Screen) updatePen(cell *Cell) {
|
|
if cell == nil {
|
|
cell = &BlankCell
|
|
}
|
|
|
|
if s.opts.Profile != 0 {
|
|
// Downsample colors to the given color profile.
|
|
cell.Style = ConvertStyle(cell.Style, s.opts.Profile)
|
|
cell.Link = ConvertLink(cell.Link, s.opts.Profile)
|
|
}
|
|
|
|
if !cell.Style.Equal(&s.cur.Style) {
|
|
seq := cell.Style.DiffSequence(s.cur.Style)
|
|
if cell.Style.Empty() && len(seq) > len(ansi.ResetStyle) {
|
|
seq = ansi.ResetStyle
|
|
}
|
|
s.buf.WriteString(seq) //nolint:errcheck
|
|
s.cur.Style = cell.Style
|
|
}
|
|
if !cell.Link.Equal(&s.cur.Link) {
|
|
s.buf.WriteString(ansi.SetHyperlink(cell.Link.URL, cell.Link.Params)) //nolint:errcheck
|
|
s.cur.Link = cell.Link
|
|
}
|
|
}
|
|
|
|
// emitRange emits a range of cells to the buffer. It it equivalent to calling
|
|
// [Screen.putCell] for each cell in the range. This is optimized to use
|
|
// [ansi.ECH] and [ansi.REP].
|
|
// Returns whether the cursor is at the end of interval or somewhere in the
|
|
// middle.
|
|
func (s *Screen) emitRange(line Line, n int) (eoi bool) {
|
|
for n > 0 {
|
|
var count int
|
|
for n > 1 && !cellEqual(line.At(0), line.At(1)) {
|
|
s.putCell(line.At(0))
|
|
line = line[1:]
|
|
n--
|
|
}
|
|
|
|
cell0 := line[0]
|
|
if n == 1 {
|
|
s.putCell(cell0)
|
|
return false
|
|
}
|
|
|
|
count = 2
|
|
for count < n && cellEqual(line.At(count), cell0) {
|
|
count++
|
|
}
|
|
|
|
ech := ansi.EraseCharacter(count)
|
|
cup := ansi.CursorPosition(s.cur.X+count, s.cur.Y)
|
|
rep := ansi.RepeatPreviousCharacter(count)
|
|
if s.xtermLike && count > len(ech)+len(cup) && cell0 != nil && cell0.Clear() {
|
|
s.updatePen(cell0)
|
|
s.buf.WriteString(ech) //nolint:errcheck
|
|
|
|
// If this is the last cell, we don't need to move the cursor.
|
|
if count < n {
|
|
s.move(s.cur.X+count, s.cur.Y)
|
|
} else {
|
|
return true // cursor in the middle
|
|
}
|
|
} else if s.xtermLike && count > len(rep) &&
|
|
(cell0 == nil || (len(cell0.Comb) == 0 && cell0.Rune < 256)) {
|
|
// We only support ASCII characters. Most terminals will handle
|
|
// non-ASCII characters correctly, but some might not, ahem xterm.
|
|
//
|
|
// NOTE: [ansi.REP] only repeats the last rune and won't work
|
|
// if the last cell contains multiple runes.
|
|
|
|
wrapPossible := s.cur.X+count >= s.newbuf.Width()
|
|
repCount := count
|
|
if wrapPossible {
|
|
repCount--
|
|
}
|
|
|
|
s.updatePen(cell0)
|
|
s.putCell(cell0)
|
|
repCount-- // cell0 is a single width cell ASCII character
|
|
|
|
s.buf.WriteString(ansi.RepeatPreviousCharacter(repCount)) //nolint:errcheck
|
|
s.cur.X += repCount
|
|
if wrapPossible {
|
|
s.putCell(cell0)
|
|
}
|
|
} else {
|
|
for i := 0; i < count; i++ {
|
|
s.putCell(line.At(i))
|
|
}
|
|
}
|
|
|
|
line = line[clamp(count, 0, len(line)):]
|
|
n -= count
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// putRange puts a range of cells from the old line to the new line.
|
|
// Returns whether the cursor is at the end of interval or somewhere in the
|
|
// middle.
|
|
func (s *Screen) putRange(oldLine, newLine Line, y, start, end int) (eoi bool) {
|
|
inline := min(len(ansi.CursorPosition(start+1, y+1)),
|
|
min(len(ansi.HorizontalPositionAbsolute(start+1)),
|
|
len(ansi.CursorForward(start+1))))
|
|
if (end - start + 1) > inline {
|
|
var j, same int
|
|
for j, same = start, 0; j <= end; j++ {
|
|
oldCell, newCell := oldLine.At(j), newLine.At(j)
|
|
if same == 0 && oldCell != nil && oldCell.Empty() {
|
|
continue
|
|
}
|
|
if cellEqual(oldCell, newCell) {
|
|
same++
|
|
} else {
|
|
if same > end-start {
|
|
s.emitRange(newLine[start:], j-same-start)
|
|
s.move(j, y)
|
|
start = j
|
|
}
|
|
same = 0
|
|
}
|
|
}
|
|
|
|
i := s.emitRange(newLine[start:], j-same-start)
|
|
|
|
// Always return 1 for the next [Screen.move] after a [Screen.putRange] if
|
|
// we found identical characters at end of interval.
|
|
if same == 0 {
|
|
return i
|
|
}
|
|
return true
|
|
}
|
|
|
|
return s.emitRange(newLine[start:], end-start+1)
|
|
}
|
|
|
|
// clearToEnd clears the screen from the current cursor position to the end of
|
|
// line.
|
|
func (s *Screen) clearToEnd(blank *Cell, force bool) { //nolint:unparam
|
|
if s.cur.Y >= 0 {
|
|
curline := s.curbuf.Line(s.cur.Y)
|
|
for j := s.cur.X; j < s.curbuf.Width(); j++ {
|
|
if j >= 0 {
|
|
c := curline.At(j)
|
|
if !cellEqual(c, blank) {
|
|
curline.Set(j, blank)
|
|
force = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if force {
|
|
s.updatePen(blank)
|
|
count := s.newbuf.Width() - s.cur.X
|
|
if s.el0Cost() <= count {
|
|
s.buf.WriteString(ansi.EraseLineRight) //nolint:errcheck
|
|
} else {
|
|
for i := 0; i < count; i++ {
|
|
s.putCell(blank)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// clearBlank returns a blank cell based on the current cursor background color.
|
|
func (s *Screen) clearBlank() *Cell {
|
|
c := BlankCell
|
|
if !s.cur.Style.Empty() || !s.cur.Link.Empty() {
|
|
c.Style = s.cur.Style
|
|
c.Link = s.cur.Link
|
|
}
|
|
return &c
|
|
}
|
|
|
|
// insertCells inserts the count cells pointed by the given line at the current
|
|
// cursor position.
|
|
func (s *Screen) insertCells(line Line, count int) {
|
|
if s.xtermLike {
|
|
// Use [ansi.ICH] as an optimization.
|
|
s.buf.WriteString(ansi.InsertCharacter(count)) //nolint:errcheck
|
|
} else {
|
|
// Otherwise, use [ansi.IRM] mode.
|
|
s.buf.WriteString(ansi.SetInsertReplaceMode) //nolint:errcheck
|
|
}
|
|
|
|
for i := 0; count > 0; i++ {
|
|
s.putAttrCell(line[i])
|
|
count--
|
|
}
|
|
|
|
if !s.xtermLike {
|
|
s.buf.WriteString(ansi.ResetInsertReplaceMode) //nolint:errcheck
|
|
}
|
|
}
|
|
|
|
// el0Cost returns the cost of using [ansi.EL] 0 i.e. [ansi.EraseLineRight]. If
|
|
// this terminal supports background color erase, it can be cheaper to use
|
|
// [ansi.EL] 0 i.e. [ansi.EraseLineRight] to clear
|
|
// trailing spaces.
|
|
func (s *Screen) el0Cost() int {
|
|
if s.xtermLike {
|
|
return 0
|
|
}
|
|
return len(ansi.EraseLineRight)
|
|
}
|
|
|
|
// transformLine transforms the given line in the current window to the
|
|
// corresponding line in the new window. It uses [ansi.ICH] and [ansi.DCH] to
|
|
// insert or delete characters.
|
|
func (s *Screen) transformLine(y int) {
|
|
var firstCell, oLastCell, nLastCell int // first, old last, new last index
|
|
oldLine := s.curbuf.Line(y)
|
|
newLine := s.newbuf.Line(y)
|
|
|
|
// Find the first changed cell in the line
|
|
var lineChanged bool
|
|
for i := 0; i < s.newbuf.Width(); i++ {
|
|
if !cellEqual(newLine.At(i), oldLine.At(i)) {
|
|
lineChanged = true
|
|
break
|
|
}
|
|
}
|
|
|
|
const ceolStandoutGlitch = false
|
|
if ceolStandoutGlitch && lineChanged {
|
|
s.move(0, y)
|
|
s.clearToEnd(nil, false)
|
|
s.putRange(oldLine, newLine, y, 0, s.newbuf.Width()-1)
|
|
} else {
|
|
blank := newLine.At(0)
|
|
|
|
// It might be cheaper to clear leading spaces with [ansi.EL] 1 i.e.
|
|
// [ansi.EraseLineLeft].
|
|
if blank == nil || blank.Clear() {
|
|
var oFirstCell, nFirstCell int
|
|
for oFirstCell = 0; oFirstCell < s.curbuf.Width(); oFirstCell++ {
|
|
if !cellEqual(oldLine.At(oFirstCell), blank) {
|
|
break
|
|
}
|
|
}
|
|
for nFirstCell = 0; nFirstCell < s.newbuf.Width(); nFirstCell++ {
|
|
if !cellEqual(newLine.At(nFirstCell), blank) {
|
|
break
|
|
}
|
|
}
|
|
|
|
if nFirstCell == oFirstCell {
|
|
firstCell = nFirstCell
|
|
|
|
// Find the first differing cell
|
|
for firstCell < s.newbuf.Width() &&
|
|
cellEqual(oldLine.At(firstCell), newLine.At(firstCell)) {
|
|
firstCell++
|
|
}
|
|
} else if oFirstCell > nFirstCell {
|
|
firstCell = nFirstCell
|
|
} else if oFirstCell < nFirstCell {
|
|
firstCell = oFirstCell
|
|
el1Cost := len(ansi.EraseLineLeft)
|
|
if el1Cost < nFirstCell-oFirstCell {
|
|
if nFirstCell >= s.newbuf.Width() {
|
|
s.move(0, y)
|
|
s.updatePen(blank)
|
|
s.buf.WriteString(ansi.EraseLineRight) //nolint:errcheck
|
|
} else {
|
|
s.move(nFirstCell-1, y)
|
|
s.updatePen(blank)
|
|
s.buf.WriteString(ansi.EraseLineLeft) //nolint:errcheck
|
|
}
|
|
|
|
for firstCell < nFirstCell {
|
|
oldLine.Set(firstCell, blank)
|
|
firstCell++
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Find the first differing cell
|
|
for firstCell < s.newbuf.Width() && cellEqual(newLine.At(firstCell), oldLine.At(firstCell)) {
|
|
firstCell++
|
|
}
|
|
}
|
|
|
|
// If we didn't find one, we're done
|
|
if firstCell >= s.newbuf.Width() {
|
|
return
|
|
}
|
|
|
|
blank = newLine.At(s.newbuf.Width() - 1)
|
|
if blank != nil && !blank.Clear() {
|
|
// Find the last differing cell
|
|
nLastCell = s.newbuf.Width() - 1
|
|
for nLastCell > firstCell && cellEqual(newLine.At(nLastCell), oldLine.At(nLastCell)) {
|
|
nLastCell--
|
|
}
|
|
|
|
if nLastCell >= firstCell {
|
|
s.move(firstCell, y)
|
|
s.putRange(oldLine, newLine, y, firstCell, nLastCell)
|
|
if firstCell < len(oldLine) && firstCell < len(newLine) {
|
|
copy(oldLine[firstCell:], newLine[firstCell:])
|
|
} else {
|
|
copy(oldLine, newLine)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Find last non-blank cell in the old line.
|
|
oLastCell = s.curbuf.Width() - 1
|
|
for oLastCell > firstCell && cellEqual(oldLine.At(oLastCell), blank) {
|
|
oLastCell--
|
|
}
|
|
|
|
// Find last non-blank cell in the new line.
|
|
nLastCell = s.newbuf.Width() - 1
|
|
for nLastCell > firstCell && cellEqual(newLine.At(nLastCell), blank) {
|
|
nLastCell--
|
|
}
|
|
|
|
if nLastCell == firstCell && s.el0Cost() < oLastCell-nLastCell {
|
|
s.move(firstCell, y)
|
|
if !cellEqual(newLine.At(firstCell), blank) {
|
|
s.putCell(newLine.At(firstCell))
|
|
}
|
|
s.clearToEnd(blank, false)
|
|
} else if nLastCell != oLastCell &&
|
|
!cellEqual(newLine.At(nLastCell), oldLine.At(oLastCell)) {
|
|
s.move(firstCell, y)
|
|
if oLastCell-nLastCell > s.el0Cost() {
|
|
if s.putRange(oldLine, newLine, y, firstCell, nLastCell) {
|
|
s.move(nLastCell+1, y)
|
|
}
|
|
s.clearToEnd(blank, false)
|
|
} else {
|
|
n := max(nLastCell, oLastCell)
|
|
s.putRange(oldLine, newLine, y, firstCell, n)
|
|
}
|
|
} else {
|
|
nLastNonBlank := nLastCell
|
|
oLastNonBlank := oLastCell
|
|
|
|
// Find the last cells that really differ.
|
|
// Can be -1 if no cells differ.
|
|
for cellEqual(newLine.At(nLastCell), oldLine.At(oLastCell)) {
|
|
if !cellEqual(newLine.At(nLastCell-1), oldLine.At(oLastCell-1)) {
|
|
break
|
|
}
|
|
nLastCell--
|
|
oLastCell--
|
|
if nLastCell == -1 || oLastCell == -1 {
|
|
break
|
|
}
|
|
}
|
|
|
|
n := min(oLastCell, nLastCell)
|
|
if n >= firstCell {
|
|
s.move(firstCell, y)
|
|
s.putRange(oldLine, newLine, y, firstCell, n)
|
|
}
|
|
|
|
if oLastCell < nLastCell {
|
|
m := max(nLastNonBlank, oLastNonBlank)
|
|
if n != 0 {
|
|
for n > 0 {
|
|
wide := newLine.At(n + 1)
|
|
if wide == nil || !wide.Empty() {
|
|
break
|
|
}
|
|
n--
|
|
oLastCell--
|
|
}
|
|
} else if n >= firstCell && newLine.At(n) != nil && newLine.At(n).Width > 1 {
|
|
next := newLine.At(n + 1)
|
|
for next != nil && next.Empty() {
|
|
n++
|
|
oLastCell++
|
|
}
|
|
}
|
|
|
|
s.move(n+1, y)
|
|
ichCost := 3 + nLastCell - oLastCell
|
|
if s.xtermLike && (nLastCell < nLastNonBlank || ichCost > (m-n)) {
|
|
s.putRange(oldLine, newLine, y, n+1, m)
|
|
} else {
|
|
s.insertCells(newLine[n+1:], nLastCell-oLastCell)
|
|
}
|
|
} else if oLastCell > nLastCell {
|
|
s.move(n+1, y)
|
|
dchCost := 3 + oLastCell - nLastCell
|
|
if dchCost > len(ansi.EraseLineRight)+nLastNonBlank-(n+1) {
|
|
if s.putRange(oldLine, newLine, y, n+1, nLastNonBlank) {
|
|
s.move(nLastNonBlank+1, y)
|
|
}
|
|
s.clearToEnd(blank, false)
|
|
} else {
|
|
s.updatePen(blank)
|
|
s.deleteCells(oLastCell - nLastCell)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update the old line with the new line
|
|
if firstCell < len(oldLine) && firstCell < len(newLine) {
|
|
copy(oldLine[firstCell:], newLine[firstCell:])
|
|
} else {
|
|
copy(oldLine, newLine)
|
|
}
|
|
}
|
|
|
|
// deleteCells deletes the count cells at the current cursor position and moves
|
|
// the rest of the line to the left. This is equivalent to [ansi.DCH].
|
|
func (s *Screen) deleteCells(count int) {
|
|
// [ansi.DCH] will shift in cells from the right margin so we need to
|
|
// ensure that they are the right style.
|
|
s.buf.WriteString(ansi.DeleteCharacter(count)) //nolint:errcheck
|
|
}
|
|
|
|
// clearToBottom clears the screen from the current cursor position to the end
|
|
// of the screen.
|
|
func (s *Screen) clearToBottom(blank *Cell) {
|
|
row, col := s.cur.Y, s.cur.X
|
|
if row < 0 {
|
|
row = 0
|
|
}
|
|
|
|
s.updatePen(blank)
|
|
s.buf.WriteString(ansi.EraseScreenBelow) //nolint:errcheck
|
|
// Clear the rest of the current line
|
|
s.curbuf.ClearRect(Rect(col, row, s.curbuf.Width()-col, 1))
|
|
// Clear everything below the current line
|
|
s.curbuf.ClearRect(Rect(0, row+1, s.curbuf.Width(), s.curbuf.Height()-row-1))
|
|
}
|
|
|
|
// clearBottom tests if clearing the end of the screen would satisfy part of
|
|
// the screen update. Scan backwards through lines in the screen checking if
|
|
// each is blank and one or more are changed.
|
|
// It returns the top line.
|
|
func (s *Screen) clearBottom(total int) (top int) {
|
|
if total <= 0 {
|
|
return
|
|
}
|
|
|
|
top = total
|
|
last := s.newbuf.Width()
|
|
blank := s.clearBlank()
|
|
canClearWithBlank := blank == nil || blank.Clear()
|
|
|
|
if canClearWithBlank {
|
|
var row int
|
|
for row = total - 1; row >= 0; row-- {
|
|
oldLine := s.curbuf.Line(row)
|
|
newLine := s.newbuf.Line(row)
|
|
|
|
var col int
|
|
ok := true
|
|
for col = 0; ok && col < last; col++ {
|
|
ok = cellEqual(newLine.At(col), blank)
|
|
}
|
|
if !ok {
|
|
break
|
|
}
|
|
|
|
for col = 0; ok && col < last; col++ {
|
|
ok = len(oldLine) == last && cellEqual(oldLine.At(col), blank)
|
|
}
|
|
if !ok {
|
|
top = row
|
|
}
|
|
}
|
|
|
|
if top < total {
|
|
s.move(0, top-1) // top is 1-based
|
|
s.clearToBottom(blank)
|
|
if s.oldhash != nil && s.newhash != nil &&
|
|
row < len(s.oldhash) && row < len(s.newhash) {
|
|
for row := top; row < s.newbuf.Height(); row++ {
|
|
s.oldhash[row] = s.newhash[row]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// clearScreen clears the screen and put cursor at home.
|
|
func (s *Screen) clearScreen(blank *Cell) {
|
|
s.updatePen(blank)
|
|
s.buf.WriteString(ansi.CursorHomePosition) //nolint:errcheck
|
|
s.buf.WriteString(ansi.EraseEntireScreen) //nolint:errcheck
|
|
s.cur.X, s.cur.Y = 0, 0
|
|
s.curbuf.Fill(blank)
|
|
}
|
|
|
|
// clearBelow clears everything below and including the row.
|
|
func (s *Screen) clearBelow(blank *Cell, row int) {
|
|
s.move(0, row)
|
|
s.clearToBottom(blank)
|
|
}
|
|
|
|
// clearUpdate forces a screen redraw.
|
|
func (s *Screen) clearUpdate() {
|
|
blank := s.clearBlank()
|
|
var nonEmpty int
|
|
if s.opts.AltScreen {
|
|
// XXX: We're using the maximum height of the two buffers to ensure
|
|
// we write newly added lines to the screen in [Screen.transformLine].
|
|
nonEmpty = max(s.curbuf.Height(), s.newbuf.Height())
|
|
s.clearScreen(blank)
|
|
} else {
|
|
nonEmpty = s.newbuf.Height()
|
|
s.clearBelow(blank, 0)
|
|
}
|
|
nonEmpty = s.clearBottom(nonEmpty)
|
|
for i := 0; i < nonEmpty; i++ {
|
|
s.transformLine(i)
|
|
}
|
|
}
|
|
|
|
// Flush flushes the buffer to the screen.
|
|
func (s *Screen) Flush() (err error) {
|
|
s.mu.Lock()
|
|
defer s.mu.Unlock()
|
|
return s.flush()
|
|
}
|
|
|
|
func (s *Screen) flush() (err error) {
|
|
// Write the buffer
|
|
if s.buf.Len() > 0 {
|
|
_, err = s.w.Write(s.buf.Bytes()) //nolint:errcheck
|
|
if err == nil {
|
|
s.buf.Reset()
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Render renders changes of the screen to the internal buffer. Call
|
|
// [Screen.Flush] to flush pending changes to the screen.
|
|
func (s *Screen) Render() {
|
|
s.mu.Lock()
|
|
s.render()
|
|
s.mu.Unlock()
|
|
}
|
|
|
|
func (s *Screen) render() {
|
|
// Do we need to render anything?
|
|
if s.opts.AltScreen == s.altScreenMode &&
|
|
!s.opts.ShowCursor == s.cursorHidden &&
|
|
!s.clear &&
|
|
len(s.touch) == 0 &&
|
|
len(s.queueAbove) == 0 {
|
|
return
|
|
}
|
|
|
|
// TODO: Investigate whether this is necessary. Theoretically, terminals
|
|
// can add/remove tab stops and we should be able to handle that. We could
|
|
// use [ansi.DECTABSR] to read the tab stops, but that's not implemented in
|
|
// most terminals :/
|
|
// // Are we using hard tabs? If so, ensure tabs are using the
|
|
// // default interval using [ansi.DECST8C].
|
|
// if s.opts.HardTabs && !s.initTabs {
|
|
// s.buf.WriteString(ansi.SetTabEvery8Columns)
|
|
// s.initTabs = true
|
|
// }
|
|
|
|
// Do we need alt-screen mode?
|
|
if s.opts.AltScreen != s.altScreenMode {
|
|
if s.opts.AltScreen {
|
|
s.buf.WriteString(ansi.SetAltScreenSaveCursorMode)
|
|
} else {
|
|
s.buf.WriteString(ansi.ResetAltScreenSaveCursorMode)
|
|
}
|
|
s.altScreenMode = s.opts.AltScreen
|
|
}
|
|
|
|
// Do we need text cursor mode?
|
|
if !s.opts.ShowCursor != s.cursorHidden {
|
|
s.cursorHidden = !s.opts.ShowCursor
|
|
if s.cursorHidden {
|
|
s.buf.WriteString(ansi.HideCursor)
|
|
}
|
|
}
|
|
|
|
// Do we have queued strings to write above the screen?
|
|
if len(s.queueAbove) > 0 {
|
|
// TODO: Use scrolling region if available.
|
|
// TODO: Use [Screen.Write] [io.Writer] interface.
|
|
|
|
// We need to scroll the screen up by the number of lines in the queue.
|
|
// We can't use [ansi.SU] because we want the cursor to move down until
|
|
// it reaches the bottom of the screen.
|
|
s.move(0, s.newbuf.Height()-1)
|
|
s.buf.WriteString(strings.Repeat("\n", len(s.queueAbove)))
|
|
s.cur.Y += len(s.queueAbove)
|
|
// XXX: Now go to the top of the screen, insert new lines, and write
|
|
// the queued strings. It is important to use [Screen.moveCursor]
|
|
// instead of [Screen.move] because we don't want to perform any checks
|
|
// on the cursor position.
|
|
s.moveCursor(0, 0, false)
|
|
s.buf.WriteString(ansi.InsertLine(len(s.queueAbove)))
|
|
for _, line := range s.queueAbove {
|
|
s.buf.WriteString(line + "\r\n")
|
|
}
|
|
|
|
// Clear the queue
|
|
s.queueAbove = s.queueAbove[:0]
|
|
}
|
|
|
|
var nonEmpty int
|
|
|
|
// XXX: In inline mode, after a screen resize, we need to clear the extra
|
|
// lines at the bottom of the screen. This is because in inline mode, we
|
|
// don't use the full screen height and the current buffer size might be
|
|
// larger than the new buffer size.
|
|
partialClear := !s.opts.AltScreen && s.cur.X != -1 && s.cur.Y != -1 &&
|
|
s.curbuf.Width() == s.newbuf.Width() &&
|
|
s.curbuf.Height() > 0 &&
|
|
s.curbuf.Height() > s.newbuf.Height()
|
|
|
|
if !s.clear && partialClear {
|
|
s.clearBelow(nil, s.newbuf.Height()-1)
|
|
}
|
|
|
|
if s.clear {
|
|
s.clearUpdate()
|
|
s.clear = false
|
|
} else if len(s.touch) > 0 {
|
|
if s.opts.AltScreen {
|
|
// Optimize scrolling for the alternate screen buffer.
|
|
// TODO: Should we optimize for inline mode as well? If so, we need
|
|
// to know the actual cursor position to use [ansi.DECSTBM].
|
|
s.scrollOptimize()
|
|
}
|
|
|
|
var changedLines int
|
|
var i int
|
|
|
|
if s.opts.AltScreen {
|
|
nonEmpty = min(s.curbuf.Height(), s.newbuf.Height())
|
|
} else {
|
|
nonEmpty = s.newbuf.Height()
|
|
}
|
|
|
|
nonEmpty = s.clearBottom(nonEmpty)
|
|
for i = 0; i < nonEmpty; i++ {
|
|
_, ok := s.touch[i]
|
|
if ok {
|
|
s.transformLine(i)
|
|
changedLines++
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sync windows and screen
|
|
s.touch = make(map[int]lineData, s.newbuf.Height())
|
|
|
|
if s.curbuf.Width() != s.newbuf.Width() || s.curbuf.Height() != s.newbuf.Height() {
|
|
// Resize the old buffer to match the new buffer.
|
|
_, oldh := s.curbuf.Width(), s.curbuf.Height()
|
|
s.curbuf.Resize(s.newbuf.Width(), s.newbuf.Height())
|
|
// Sync new lines to old lines
|
|
for i := oldh - 1; i < s.newbuf.Height(); i++ {
|
|
copy(s.curbuf.Line(i), s.newbuf.Line(i))
|
|
}
|
|
}
|
|
|
|
s.updatePen(nil) // nil indicates a blank cell with no styles
|
|
|
|
// Do we have enough changes to justify toggling the cursor?
|
|
if s.buf.Len() > 1 && s.opts.ShowCursor && !s.cursorHidden && s.queuedText {
|
|
nb := new(bytes.Buffer)
|
|
nb.Grow(s.buf.Len() + len(ansi.HideCursor) + len(ansi.ShowCursor))
|
|
nb.WriteString(ansi.HideCursor)
|
|
nb.Write(s.buf.Bytes())
|
|
nb.WriteString(ansi.ShowCursor)
|
|
*s.buf = *nb
|
|
}
|
|
|
|
s.queuedText = false
|
|
}
|
|
|
|
// Close writes the final screen update and resets the screen.
|
|
func (s *Screen) Close() (err error) {
|
|
s.mu.Lock()
|
|
defer s.mu.Unlock()
|
|
|
|
s.render()
|
|
s.updatePen(nil)
|
|
// Go to the bottom of the screen
|
|
s.move(0, s.newbuf.Height()-1)
|
|
|
|
if s.altScreenMode {
|
|
s.buf.WriteString(ansi.ResetAltScreenSaveCursorMode)
|
|
s.altScreenMode = false
|
|
}
|
|
|
|
if s.cursorHidden {
|
|
s.buf.WriteString(ansi.ShowCursor)
|
|
s.cursorHidden = false
|
|
}
|
|
|
|
// Write the buffer
|
|
err = s.flush()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
s.reset()
|
|
return
|
|
}
|
|
|
|
// reset resets the screen to its initial state.
|
|
func (s *Screen) reset() {
|
|
s.scrollHeight = 0
|
|
s.cursorHidden = false
|
|
s.altScreenMode = false
|
|
s.touch = make(map[int]lineData, s.newbuf.Height())
|
|
if s.curbuf != nil {
|
|
s.curbuf.Clear()
|
|
}
|
|
if s.newbuf != nil {
|
|
s.newbuf.Clear()
|
|
}
|
|
s.buf.Reset()
|
|
s.tabs = DefaultTabStops(s.newbuf.Width())
|
|
s.oldhash, s.newhash = nil, nil
|
|
|
|
// We always disable HardTabs when termtype is "linux".
|
|
if strings.HasPrefix(s.opts.Term, "linux") {
|
|
s.opts.HardTabs = false
|
|
}
|
|
}
|
|
|
|
// Resize resizes the screen.
|
|
func (s *Screen) Resize(width, height int) bool {
|
|
oldw := s.newbuf.Width()
|
|
oldh := s.newbuf.Height()
|
|
|
|
if s.opts.AltScreen || width != oldw {
|
|
// We only clear the whole screen if the width changes. Adding/removing
|
|
// rows is handled by the [Screen.render] and [Screen.transformLine]
|
|
// methods.
|
|
s.clear = true
|
|
}
|
|
|
|
// Clear new columns and lines
|
|
if width > oldh {
|
|
s.ClearRect(Rect(max(oldw-1, 0), 0, width-oldw, height))
|
|
} else if width < oldw {
|
|
s.ClearRect(Rect(max(width-1, 0), 0, oldw-width, height))
|
|
}
|
|
|
|
if height > oldh {
|
|
s.ClearRect(Rect(0, max(oldh-1, 0), width, height-oldh))
|
|
} else if height < oldh {
|
|
s.ClearRect(Rect(0, max(height-1, 0), width, oldh-height))
|
|
}
|
|
|
|
s.mu.Lock()
|
|
s.newbuf.Resize(width, height)
|
|
s.tabs.Resize(width)
|
|
s.oldhash, s.newhash = nil, nil
|
|
s.scrollHeight = 0 // reset scroll lines
|
|
s.mu.Unlock()
|
|
|
|
return true
|
|
}
|
|
|
|
// MoveTo moves the cursor to the given position.
|
|
func (s *Screen) MoveTo(x, y int) {
|
|
s.mu.Lock()
|
|
s.move(x, y)
|
|
s.mu.Unlock()
|
|
}
|
|
|
|
// InsertAbove inserts string above the screen. The inserted string is not
|
|
// managed by the screen. This does nothing when alternate screen mode is
|
|
// enabled.
|
|
func (s *Screen) InsertAbove(str string) {
|
|
if s.opts.AltScreen {
|
|
return
|
|
}
|
|
s.mu.Lock()
|
|
for _, line := range strings.Split(str, "\n") {
|
|
s.queueAbove = append(s.queueAbove, s.method.Truncate(line, s.Width(), ""))
|
|
}
|
|
s.mu.Unlock()
|
|
}
|