forked from toolshed/abra
		
	
		
			
				
	
	
		
			154 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2014 Matthew Endsley
 | |
| // All rights reserved
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted providing that the following conditions
 | |
| // are met:
 | |
| // 1. Redistributions of source code must retain the above copyright
 | |
| //    notice, this list of conditions and the following disclaimer.
 | |
| // 2. Redistributions in binary form must reproduce the above copyright
 | |
| //    notice, this list of conditions and the following disclaimer in the
 | |
| //    documentation and/or other materials provided with the distribution.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 | |
| // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| // ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 | |
| // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
| // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
| // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | |
| // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 | |
| // IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| // POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| // Package keywrap is an implementation of the RFC 3394 AES key wrapping
 | |
| // algorithm. This is used in OpenPGP with elliptic curve keys.
 | |
| package keywrap
 | |
| 
 | |
| import (
 | |
| 	"crypto/aes"
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	// ErrWrapPlaintext is returned if the plaintext is not a multiple
 | |
| 	// of 64 bits.
 | |
| 	ErrWrapPlaintext = errors.New("keywrap: plainText must be a multiple of 64 bits")
 | |
| 
 | |
| 	// ErrUnwrapCiphertext is returned if the ciphertext is not a
 | |
| 	// multiple of 64 bits.
 | |
| 	ErrUnwrapCiphertext = errors.New("keywrap: cipherText must by a multiple of 64 bits")
 | |
| 
 | |
| 	// ErrUnwrapFailed is returned if unwrapping a key fails.
 | |
| 	ErrUnwrapFailed = errors.New("keywrap: failed to unwrap key")
 | |
| 
 | |
| 	// NB: the AES NewCipher call only fails if the key is an invalid length.
 | |
| 
 | |
| 	// ErrInvalidKey is returned when the AES key is invalid.
 | |
| 	ErrInvalidKey = errors.New("keywrap: invalid AES key")
 | |
| )
 | |
| 
 | |
| // Wrap a key using the RFC 3394 AES Key Wrap Algorithm.
 | |
| func Wrap(key, plainText []byte) ([]byte, error) {
 | |
| 	if len(plainText)%8 != 0 {
 | |
| 		return nil, ErrWrapPlaintext
 | |
| 	}
 | |
| 
 | |
| 	c, err := aes.NewCipher(key)
 | |
| 	if err != nil {
 | |
| 		return nil, ErrInvalidKey
 | |
| 	}
 | |
| 
 | |
| 	nblocks := len(plainText) / 8
 | |
| 
 | |
| 	// 1) Initialize variables.
 | |
| 	var block [aes.BlockSize]byte
 | |
| 	// - Set A = IV, an initial value (see 2.2.3)
 | |
| 	for ii := 0; ii < 8; ii++ {
 | |
| 		block[ii] = 0xA6
 | |
| 	}
 | |
| 
 | |
| 	// - For i = 1 to n
 | |
| 	// -   Set R[i] = P[i]
 | |
| 	intermediate := make([]byte, len(plainText))
 | |
| 	copy(intermediate, plainText)
 | |
| 
 | |
| 	// 2) Calculate intermediate values.
 | |
| 	for ii := 0; ii < 6; ii++ {
 | |
| 		for jj := 0; jj < nblocks; jj++ {
 | |
| 			// - B = AES(K, A | R[i])
 | |
| 			copy(block[8:], intermediate[jj*8:jj*8+8])
 | |
| 			c.Encrypt(block[:], block[:])
 | |
| 
 | |
| 			// - A = MSB(64, B) ^ t where t = (n*j)+1
 | |
| 			t := uint64(ii*nblocks + jj + 1)
 | |
| 			val := binary.BigEndian.Uint64(block[:8]) ^ t
 | |
| 			binary.BigEndian.PutUint64(block[:8], val)
 | |
| 
 | |
| 			// - R[i] = LSB(64, B)
 | |
| 			copy(intermediate[jj*8:jj*8+8], block[8:])
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// 3) Output results.
 | |
| 	// - Set C[0] = A
 | |
| 	// - For i = 1 to n
 | |
| 	// -   C[i] = R[i]
 | |
| 	return append(block[:8], intermediate...), nil
 | |
| }
 | |
| 
 | |
| // Unwrap a key using the RFC 3394 AES Key Wrap Algorithm.
 | |
| func Unwrap(key, cipherText []byte) ([]byte, error) {
 | |
| 	if len(cipherText)%8 != 0 {
 | |
| 		return nil, ErrUnwrapCiphertext
 | |
| 	}
 | |
| 
 | |
| 	c, err := aes.NewCipher(key)
 | |
| 	if err != nil {
 | |
| 		return nil, ErrInvalidKey
 | |
| 	}
 | |
| 
 | |
| 	nblocks := len(cipherText)/8 - 1
 | |
| 
 | |
| 	// 1) Initialize variables.
 | |
| 	var block [aes.BlockSize]byte
 | |
| 	// - Set A = C[0]
 | |
| 	copy(block[:8], cipherText[:8])
 | |
| 
 | |
| 	// - For i = 1 to n
 | |
| 	// -   Set R[i] = C[i]
 | |
| 	intermediate := make([]byte, len(cipherText)-8)
 | |
| 	copy(intermediate, cipherText[8:])
 | |
| 
 | |
| 	// 2) Compute intermediate values.
 | |
| 	for jj := 5; jj >= 0; jj-- {
 | |
| 		for ii := nblocks - 1; ii >= 0; ii-- {
 | |
| 			// - B = AES-1(K, (A ^ t) | R[i]) where t = n*j+1
 | |
| 			// - A = MSB(64, B)
 | |
| 			t := uint64(jj*nblocks + ii + 1)
 | |
| 			val := binary.BigEndian.Uint64(block[:8]) ^ t
 | |
| 			binary.BigEndian.PutUint64(block[:8], val)
 | |
| 
 | |
| 			copy(block[8:], intermediate[ii*8:ii*8+8])
 | |
| 			c.Decrypt(block[:], block[:])
 | |
| 
 | |
| 			// - R[i] = LSB(B, 64)
 | |
| 			copy(intermediate[ii*8:ii*8+8], block[8:])
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// 3) Output results.
 | |
| 	// - If A is an appropriate initial value (see 2.2.3),
 | |
| 	for ii := 0; ii < 8; ii++ {
 | |
| 		if block[ii] != 0xA6 {
 | |
| 			return nil, ErrUnwrapFailed
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// - For i = 1 to n
 | |
| 	// -   P[i] = R[i]
 | |
| 	return intermediate, nil
 | |
| }
 |