forked from toolshed/abra
		
	
		
			
				
	
	
		
			1784 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1784 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2012 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package ssh
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"crypto"
 | |
| 	"crypto/aes"
 | |
| 	"crypto/cipher"
 | |
| 	"crypto/dsa"
 | |
| 	"crypto/ecdsa"
 | |
| 	"crypto/ed25519"
 | |
| 	"crypto/elliptic"
 | |
| 	"crypto/md5"
 | |
| 	"crypto/rand"
 | |
| 	"crypto/rsa"
 | |
| 	"crypto/sha256"
 | |
| 	"crypto/x509"
 | |
| 	"encoding/asn1"
 | |
| 	"encoding/base64"
 | |
| 	"encoding/binary"
 | |
| 	"encoding/hex"
 | |
| 	"encoding/pem"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"math/big"
 | |
| 	"strings"
 | |
| 
 | |
| 	"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
 | |
| )
 | |
| 
 | |
| // Public key algorithms names. These values can appear in PublicKey.Type,
 | |
| // ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
 | |
| // arguments.
 | |
| const (
 | |
| 	KeyAlgoRSA = "ssh-rsa"
 | |
| 	// Deprecated: DSA is only supported at insecure key sizes, and was removed
 | |
| 	// from major implementations.
 | |
| 	KeyAlgoDSA = InsecureKeyAlgoDSA
 | |
| 	// Deprecated: DSA is only supported at insecure key sizes, and was removed
 | |
| 	// from major implementations.
 | |
| 	InsecureKeyAlgoDSA = "ssh-dss"
 | |
| 	KeyAlgoECDSA256    = "ecdsa-sha2-nistp256"
 | |
| 	KeyAlgoSKECDSA256  = "sk-ecdsa-sha2-nistp256@openssh.com"
 | |
| 	KeyAlgoECDSA384    = "ecdsa-sha2-nistp384"
 | |
| 	KeyAlgoECDSA521    = "ecdsa-sha2-nistp521"
 | |
| 	KeyAlgoED25519     = "ssh-ed25519"
 | |
| 	KeyAlgoSKED25519   = "sk-ssh-ed25519@openssh.com"
 | |
| 
 | |
| 	// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
 | |
| 	// public key formats, so they can't appear as a PublicKey.Type. The
 | |
| 	// corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
 | |
| 	KeyAlgoRSASHA256 = "rsa-sha2-256"
 | |
| 	KeyAlgoRSASHA512 = "rsa-sha2-512"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// Deprecated: use KeyAlgoRSA.
 | |
| 	SigAlgoRSA = KeyAlgoRSA
 | |
| 	// Deprecated: use KeyAlgoRSASHA256.
 | |
| 	SigAlgoRSASHA2256 = KeyAlgoRSASHA256
 | |
| 	// Deprecated: use KeyAlgoRSASHA512.
 | |
| 	SigAlgoRSASHA2512 = KeyAlgoRSASHA512
 | |
| )
 | |
| 
 | |
| // parsePubKey parses a public key of the given algorithm.
 | |
| // Use ParsePublicKey for keys with prepended algorithm.
 | |
| func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
 | |
| 	switch algo {
 | |
| 	case KeyAlgoRSA:
 | |
| 		return parseRSA(in)
 | |
| 	case InsecureKeyAlgoDSA:
 | |
| 		return parseDSA(in)
 | |
| 	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
 | |
| 		return parseECDSA(in)
 | |
| 	case KeyAlgoSKECDSA256:
 | |
| 		return parseSKECDSA(in)
 | |
| 	case KeyAlgoED25519:
 | |
| 		return parseED25519(in)
 | |
| 	case KeyAlgoSKED25519:
 | |
| 		return parseSKEd25519(in)
 | |
| 	case CertAlgoRSAv01, InsecureCertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
 | |
| 		cert, err := parseCert(in, certKeyAlgoNames[algo])
 | |
| 		if err != nil {
 | |
| 			return nil, nil, err
 | |
| 		}
 | |
| 		return cert, nil, nil
 | |
| 	}
 | |
| 	return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
 | |
| }
 | |
| 
 | |
| // parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
 | |
| // (see sshd(8) manual page) once the options and key type fields have been
 | |
| // removed.
 | |
| func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
 | |
| 	in = bytes.TrimSpace(in)
 | |
| 
 | |
| 	i := bytes.IndexAny(in, " \t")
 | |
| 	if i == -1 {
 | |
| 		i = len(in)
 | |
| 	}
 | |
| 	base64Key := in[:i]
 | |
| 
 | |
| 	key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
 | |
| 	n, err := base64.StdEncoding.Decode(key, base64Key)
 | |
| 	if err != nil {
 | |
| 		return nil, "", err
 | |
| 	}
 | |
| 	key = key[:n]
 | |
| 	out, err = ParsePublicKey(key)
 | |
| 	if err != nil {
 | |
| 		return nil, "", err
 | |
| 	}
 | |
| 	comment = string(bytes.TrimSpace(in[i:]))
 | |
| 	return out, comment, nil
 | |
| }
 | |
| 
 | |
| // ParseKnownHosts parses an entry in the format of the known_hosts file.
 | |
| //
 | |
| // The known_hosts format is documented in the sshd(8) manual page. This
 | |
| // function will parse a single entry from in. On successful return, marker
 | |
| // will contain the optional marker value (i.e. "cert-authority" or "revoked")
 | |
| // or else be empty, hosts will contain the hosts that this entry matches,
 | |
| // pubKey will contain the public key and comment will contain any trailing
 | |
| // comment at the end of the line. See the sshd(8) manual page for the various
 | |
| // forms that a host string can take.
 | |
| //
 | |
| // The unparsed remainder of the input will be returned in rest. This function
 | |
| // can be called repeatedly to parse multiple entries.
 | |
| //
 | |
| // If no entries were found in the input then err will be io.EOF. Otherwise a
 | |
| // non-nil err value indicates a parse error.
 | |
| func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
 | |
| 	for len(in) > 0 {
 | |
| 		end := bytes.IndexByte(in, '\n')
 | |
| 		if end != -1 {
 | |
| 			rest = in[end+1:]
 | |
| 			in = in[:end]
 | |
| 		} else {
 | |
| 			rest = nil
 | |
| 		}
 | |
| 
 | |
| 		end = bytes.IndexByte(in, '\r')
 | |
| 		if end != -1 {
 | |
| 			in = in[:end]
 | |
| 		}
 | |
| 
 | |
| 		in = bytes.TrimSpace(in)
 | |
| 		if len(in) == 0 || in[0] == '#' {
 | |
| 			in = rest
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		i := bytes.IndexAny(in, " \t")
 | |
| 		if i == -1 {
 | |
| 			in = rest
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// Strip out the beginning of the known_host key.
 | |
| 		// This is either an optional marker or a (set of) hostname(s).
 | |
| 		keyFields := bytes.Fields(in)
 | |
| 		if len(keyFields) < 3 || len(keyFields) > 5 {
 | |
| 			return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
 | |
| 		}
 | |
| 
 | |
| 		// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
 | |
| 		// list of hosts
 | |
| 		marker := ""
 | |
| 		if keyFields[0][0] == '@' {
 | |
| 			marker = string(keyFields[0][1:])
 | |
| 			keyFields = keyFields[1:]
 | |
| 		}
 | |
| 
 | |
| 		hosts := string(keyFields[0])
 | |
| 		// keyFields[1] contains the key type (e.g. “ssh-rsa”).
 | |
| 		// However, that information is duplicated inside the
 | |
| 		// base64-encoded key and so is ignored here.
 | |
| 
 | |
| 		key := bytes.Join(keyFields[2:], []byte(" "))
 | |
| 		if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
 | |
| 			return "", nil, nil, "", nil, err
 | |
| 		}
 | |
| 
 | |
| 		return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
 | |
| 	}
 | |
| 
 | |
| 	return "", nil, nil, "", nil, io.EOF
 | |
| }
 | |
| 
 | |
| // ParseAuthorizedKey parses a public key from an authorized_keys
 | |
| // file used in OpenSSH according to the sshd(8) manual page.
 | |
| func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
 | |
| 	for len(in) > 0 {
 | |
| 		end := bytes.IndexByte(in, '\n')
 | |
| 		if end != -1 {
 | |
| 			rest = in[end+1:]
 | |
| 			in = in[:end]
 | |
| 		} else {
 | |
| 			rest = nil
 | |
| 		}
 | |
| 
 | |
| 		end = bytes.IndexByte(in, '\r')
 | |
| 		if end != -1 {
 | |
| 			in = in[:end]
 | |
| 		}
 | |
| 
 | |
| 		in = bytes.TrimSpace(in)
 | |
| 		if len(in) == 0 || in[0] == '#' {
 | |
| 			in = rest
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		i := bytes.IndexAny(in, " \t")
 | |
| 		if i == -1 {
 | |
| 			in = rest
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
 | |
| 			return out, comment, options, rest, nil
 | |
| 		}
 | |
| 
 | |
| 		// No key type recognised. Maybe there's an options field at
 | |
| 		// the beginning.
 | |
| 		var b byte
 | |
| 		inQuote := false
 | |
| 		var candidateOptions []string
 | |
| 		optionStart := 0
 | |
| 		for i, b = range in {
 | |
| 			isEnd := !inQuote && (b == ' ' || b == '\t')
 | |
| 			if (b == ',' && !inQuote) || isEnd {
 | |
| 				if i-optionStart > 0 {
 | |
| 					candidateOptions = append(candidateOptions, string(in[optionStart:i]))
 | |
| 				}
 | |
| 				optionStart = i + 1
 | |
| 			}
 | |
| 			if isEnd {
 | |
| 				break
 | |
| 			}
 | |
| 			if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
 | |
| 				inQuote = !inQuote
 | |
| 			}
 | |
| 		}
 | |
| 		for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
 | |
| 			i++
 | |
| 		}
 | |
| 		if i == len(in) {
 | |
| 			// Invalid line: unmatched quote
 | |
| 			in = rest
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		in = in[i:]
 | |
| 		i = bytes.IndexAny(in, " \t")
 | |
| 		if i == -1 {
 | |
| 			in = rest
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
 | |
| 			options = candidateOptions
 | |
| 			return out, comment, options, rest, nil
 | |
| 		}
 | |
| 
 | |
| 		in = rest
 | |
| 		continue
 | |
| 	}
 | |
| 
 | |
| 	return nil, "", nil, nil, errors.New("ssh: no key found")
 | |
| }
 | |
| 
 | |
| // ParsePublicKey parses an SSH public key or certificate formatted for use in
 | |
| // the SSH wire protocol according to RFC 4253, section 6.6.
 | |
| func ParsePublicKey(in []byte) (out PublicKey, err error) {
 | |
| 	algo, in, ok := parseString(in)
 | |
| 	if !ok {
 | |
| 		return nil, errShortRead
 | |
| 	}
 | |
| 	var rest []byte
 | |
| 	out, rest, err = parsePubKey(in, string(algo))
 | |
| 	if len(rest) > 0 {
 | |
| 		return nil, errors.New("ssh: trailing junk in public key")
 | |
| 	}
 | |
| 
 | |
| 	return out, err
 | |
| }
 | |
| 
 | |
| // MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
 | |
| // authorized_keys file. The return value ends with newline.
 | |
| func MarshalAuthorizedKey(key PublicKey) []byte {
 | |
| 	b := &bytes.Buffer{}
 | |
| 	b.WriteString(key.Type())
 | |
| 	b.WriteByte(' ')
 | |
| 	e := base64.NewEncoder(base64.StdEncoding, b)
 | |
| 	e.Write(key.Marshal())
 | |
| 	e.Close()
 | |
| 	b.WriteByte('\n')
 | |
| 	return b.Bytes()
 | |
| }
 | |
| 
 | |
| // MarshalPrivateKey returns a PEM block with the private key serialized in the
 | |
| // OpenSSH format.
 | |
| func MarshalPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) {
 | |
| 	return marshalOpenSSHPrivateKey(key, comment, unencryptedOpenSSHMarshaler)
 | |
| }
 | |
| 
 | |
| // MarshalPrivateKeyWithPassphrase returns a PEM block holding the encrypted
 | |
| // private key serialized in the OpenSSH format.
 | |
| func MarshalPrivateKeyWithPassphrase(key crypto.PrivateKey, comment string, passphrase []byte) (*pem.Block, error) {
 | |
| 	return marshalOpenSSHPrivateKey(key, comment, passphraseProtectedOpenSSHMarshaler(passphrase))
 | |
| }
 | |
| 
 | |
| // PublicKey represents a public key using an unspecified algorithm.
 | |
| //
 | |
| // Some PublicKeys provided by this package also implement CryptoPublicKey.
 | |
| type PublicKey interface {
 | |
| 	// Type returns the key format name, e.g. "ssh-rsa".
 | |
| 	Type() string
 | |
| 
 | |
| 	// Marshal returns the serialized key data in SSH wire format, with the name
 | |
| 	// prefix. To unmarshal the returned data, use the ParsePublicKey function.
 | |
| 	Marshal() []byte
 | |
| 
 | |
| 	// Verify that sig is a signature on the given data using this key. This
 | |
| 	// method will hash the data appropriately first. sig.Format is allowed to
 | |
| 	// be any signature algorithm compatible with the key type, the caller
 | |
| 	// should check if it has more stringent requirements.
 | |
| 	Verify(data []byte, sig *Signature) error
 | |
| }
 | |
| 
 | |
| // CryptoPublicKey, if implemented by a PublicKey,
 | |
| // returns the underlying crypto.PublicKey form of the key.
 | |
| type CryptoPublicKey interface {
 | |
| 	CryptoPublicKey() crypto.PublicKey
 | |
| }
 | |
| 
 | |
| // A Signer can create signatures that verify against a public key.
 | |
| //
 | |
| // Some Signers provided by this package also implement MultiAlgorithmSigner.
 | |
| type Signer interface {
 | |
| 	// PublicKey returns the associated PublicKey.
 | |
| 	PublicKey() PublicKey
 | |
| 
 | |
| 	// Sign returns a signature for the given data. This method will hash the
 | |
| 	// data appropriately first. The signature algorithm is expected to match
 | |
| 	// the key format returned by the PublicKey.Type method (and not to be any
 | |
| 	// alternative algorithm supported by the key format).
 | |
| 	Sign(rand io.Reader, data []byte) (*Signature, error)
 | |
| }
 | |
| 
 | |
| // An AlgorithmSigner is a Signer that also supports specifying an algorithm to
 | |
| // use for signing.
 | |
| //
 | |
| // An AlgorithmSigner can't advertise the algorithms it supports, unless it also
 | |
| // implements MultiAlgorithmSigner, so it should be prepared to be invoked with
 | |
| // every algorithm supported by the public key format.
 | |
| type AlgorithmSigner interface {
 | |
| 	Signer
 | |
| 
 | |
| 	// SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
 | |
| 	// signing algorithm. Callers may pass an empty string for the algorithm in
 | |
| 	// which case the AlgorithmSigner will use a default algorithm. This default
 | |
| 	// doesn't currently control any behavior in this package.
 | |
| 	SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
 | |
| }
 | |
| 
 | |
| // MultiAlgorithmSigner is an AlgorithmSigner that also reports the algorithms
 | |
| // supported by that signer.
 | |
| type MultiAlgorithmSigner interface {
 | |
| 	AlgorithmSigner
 | |
| 
 | |
| 	// Algorithms returns the available algorithms in preference order. The list
 | |
| 	// must not be empty, and it must not include certificate types.
 | |
| 	Algorithms() []string
 | |
| }
 | |
| 
 | |
| // NewSignerWithAlgorithms returns a signer restricted to the specified
 | |
| // algorithms. The algorithms must be set in preference order. The list must not
 | |
| // be empty, and it must not include certificate types. An error is returned if
 | |
| // the specified algorithms are incompatible with the public key type.
 | |
| func NewSignerWithAlgorithms(signer AlgorithmSigner, algorithms []string) (MultiAlgorithmSigner, error) {
 | |
| 	if len(algorithms) == 0 {
 | |
| 		return nil, errors.New("ssh: please specify at least one valid signing algorithm")
 | |
| 	}
 | |
| 	var signerAlgos []string
 | |
| 	supportedAlgos := algorithmsForKeyFormat(underlyingAlgo(signer.PublicKey().Type()))
 | |
| 	if s, ok := signer.(*multiAlgorithmSigner); ok {
 | |
| 		signerAlgos = s.Algorithms()
 | |
| 	} else {
 | |
| 		signerAlgos = supportedAlgos
 | |
| 	}
 | |
| 
 | |
| 	for _, algo := range algorithms {
 | |
| 		if !contains(supportedAlgos, algo) {
 | |
| 			return nil, fmt.Errorf("ssh: algorithm %q is not supported for key type %q",
 | |
| 				algo, signer.PublicKey().Type())
 | |
| 		}
 | |
| 		if !contains(signerAlgos, algo) {
 | |
| 			return nil, fmt.Errorf("ssh: algorithm %q is restricted for the provided signer", algo)
 | |
| 		}
 | |
| 	}
 | |
| 	return &multiAlgorithmSigner{
 | |
| 		AlgorithmSigner:     signer,
 | |
| 		supportedAlgorithms: algorithms,
 | |
| 	}, nil
 | |
| }
 | |
| 
 | |
| type multiAlgorithmSigner struct {
 | |
| 	AlgorithmSigner
 | |
| 	supportedAlgorithms []string
 | |
| }
 | |
| 
 | |
| func (s *multiAlgorithmSigner) Algorithms() []string {
 | |
| 	return s.supportedAlgorithms
 | |
| }
 | |
| 
 | |
| func (s *multiAlgorithmSigner) isAlgorithmSupported(algorithm string) bool {
 | |
| 	if algorithm == "" {
 | |
| 		algorithm = underlyingAlgo(s.PublicKey().Type())
 | |
| 	}
 | |
| 	for _, algo := range s.supportedAlgorithms {
 | |
| 		if algorithm == algo {
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| func (s *multiAlgorithmSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
 | |
| 	if !s.isAlgorithmSupported(algorithm) {
 | |
| 		return nil, fmt.Errorf("ssh: algorithm %q is not supported: %v", algorithm, s.supportedAlgorithms)
 | |
| 	}
 | |
| 	return s.AlgorithmSigner.SignWithAlgorithm(rand, data, algorithm)
 | |
| }
 | |
| 
 | |
| type rsaPublicKey rsa.PublicKey
 | |
| 
 | |
| func (r *rsaPublicKey) Type() string {
 | |
| 	return "ssh-rsa"
 | |
| }
 | |
| 
 | |
| // parseRSA parses an RSA key according to RFC 4253, section 6.6.
 | |
| func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
 | |
| 	var w struct {
 | |
| 		E    *big.Int
 | |
| 		N    *big.Int
 | |
| 		Rest []byte `ssh:"rest"`
 | |
| 	}
 | |
| 	if err := Unmarshal(in, &w); err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	if w.E.BitLen() > 24 {
 | |
| 		return nil, nil, errors.New("ssh: exponent too large")
 | |
| 	}
 | |
| 	e := w.E.Int64()
 | |
| 	if e < 3 || e&1 == 0 {
 | |
| 		return nil, nil, errors.New("ssh: incorrect exponent")
 | |
| 	}
 | |
| 
 | |
| 	var key rsa.PublicKey
 | |
| 	key.E = int(e)
 | |
| 	key.N = w.N
 | |
| 	return (*rsaPublicKey)(&key), w.Rest, nil
 | |
| }
 | |
| 
 | |
| func (r *rsaPublicKey) Marshal() []byte {
 | |
| 	e := new(big.Int).SetInt64(int64(r.E))
 | |
| 	// RSA publickey struct layout should match the struct used by
 | |
| 	// parseRSACert in the x/crypto/ssh/agent package.
 | |
| 	wirekey := struct {
 | |
| 		Name string
 | |
| 		E    *big.Int
 | |
| 		N    *big.Int
 | |
| 	}{
 | |
| 		KeyAlgoRSA,
 | |
| 		e,
 | |
| 		r.N,
 | |
| 	}
 | |
| 	return Marshal(&wirekey)
 | |
| }
 | |
| 
 | |
| func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
 | |
| 	supportedAlgos := algorithmsForKeyFormat(r.Type())
 | |
| 	if !contains(supportedAlgos, sig.Format) {
 | |
| 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
 | |
| 	}
 | |
| 	hash := hashFuncs[sig.Format]
 | |
| 	h := hash.New()
 | |
| 	h.Write(data)
 | |
| 	digest := h.Sum(nil)
 | |
| 
 | |
| 	// Signatures in PKCS1v15 must match the key's modulus in
 | |
| 	// length. However with SSH, some signers provide RSA
 | |
| 	// signatures which are missing the MSB 0's of the bignum
 | |
| 	// represented. With ssh-rsa signatures, this is encouraged by
 | |
| 	// the spec (even though e.g. OpenSSH will give the full
 | |
| 	// length unconditionally). With rsa-sha2-* signatures, the
 | |
| 	// verifier is allowed to support these, even though they are
 | |
| 	// out of spec. See RFC 4253 Section 6.6 for ssh-rsa and RFC
 | |
| 	// 8332 Section 3 for rsa-sha2-* details.
 | |
| 	//
 | |
| 	// In practice:
 | |
| 	// * OpenSSH always allows "short" signatures:
 | |
| 	//   https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L526
 | |
| 	//   but always generates padded signatures:
 | |
| 	//   https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L439
 | |
| 	//
 | |
| 	// * PuTTY versions 0.81 and earlier will generate short
 | |
| 	//   signatures for all RSA signature variants. Note that
 | |
| 	//   PuTTY is embedded in other software, such as WinSCP and
 | |
| 	//   FileZilla. At the time of writing, a patch has been
 | |
| 	//   applied to PuTTY to generate padded signatures for
 | |
| 	//   rsa-sha2-*, but not yet released:
 | |
| 	//   https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=a5bcf3d384e1bf15a51a6923c3724cbbee022d8e
 | |
| 	//
 | |
| 	// * SSH.NET versions 2024.0.0 and earlier will generate short
 | |
| 	//   signatures for all RSA signature variants, fixed in 2024.1.0:
 | |
| 	//   https://github.com/sshnet/SSH.NET/releases/tag/2024.1.0
 | |
| 	//
 | |
| 	// As a result, we pad these up to the key size by inserting
 | |
| 	// leading 0's.
 | |
| 	//
 | |
| 	// Note that support for short signatures with rsa-sha2-* may
 | |
| 	// be removed in the future due to such signatures not being
 | |
| 	// allowed by the spec.
 | |
| 	blob := sig.Blob
 | |
| 	keySize := (*rsa.PublicKey)(r).Size()
 | |
| 	if len(blob) < keySize {
 | |
| 		padded := make([]byte, keySize)
 | |
| 		copy(padded[keySize-len(blob):], blob)
 | |
| 		blob = padded
 | |
| 	}
 | |
| 	return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, blob)
 | |
| }
 | |
| 
 | |
| func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
 | |
| 	return (*rsa.PublicKey)(r)
 | |
| }
 | |
| 
 | |
| type dsaPublicKey dsa.PublicKey
 | |
| 
 | |
| func (k *dsaPublicKey) Type() string {
 | |
| 	return "ssh-dss"
 | |
| }
 | |
| 
 | |
| func checkDSAParams(param *dsa.Parameters) error {
 | |
| 	// SSH specifies FIPS 186-2, which only provided a single size
 | |
| 	// (1024 bits) DSA key. FIPS 186-3 allows for larger key
 | |
| 	// sizes, which would confuse SSH.
 | |
| 	if l := param.P.BitLen(); l != 1024 {
 | |
| 		return fmt.Errorf("ssh: unsupported DSA key size %d", l)
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // parseDSA parses an DSA key according to RFC 4253, section 6.6.
 | |
| func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
 | |
| 	var w struct {
 | |
| 		P, Q, G, Y *big.Int
 | |
| 		Rest       []byte `ssh:"rest"`
 | |
| 	}
 | |
| 	if err := Unmarshal(in, &w); err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	param := dsa.Parameters{
 | |
| 		P: w.P,
 | |
| 		Q: w.Q,
 | |
| 		G: w.G,
 | |
| 	}
 | |
| 	if err := checkDSAParams(¶m); err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	key := &dsaPublicKey{
 | |
| 		Parameters: param,
 | |
| 		Y:          w.Y,
 | |
| 	}
 | |
| 	return key, w.Rest, nil
 | |
| }
 | |
| 
 | |
| func (k *dsaPublicKey) Marshal() []byte {
 | |
| 	// DSA publickey struct layout should match the struct used by
 | |
| 	// parseDSACert in the x/crypto/ssh/agent package.
 | |
| 	w := struct {
 | |
| 		Name       string
 | |
| 		P, Q, G, Y *big.Int
 | |
| 	}{
 | |
| 		k.Type(),
 | |
| 		k.P,
 | |
| 		k.Q,
 | |
| 		k.G,
 | |
| 		k.Y,
 | |
| 	}
 | |
| 
 | |
| 	return Marshal(&w)
 | |
| }
 | |
| 
 | |
| func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
 | |
| 	if sig.Format != k.Type() {
 | |
| 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 | |
| 	}
 | |
| 	h := hashFuncs[sig.Format].New()
 | |
| 	h.Write(data)
 | |
| 	digest := h.Sum(nil)
 | |
| 
 | |
| 	// Per RFC 4253, section 6.6,
 | |
| 	// The value for 'dss_signature_blob' is encoded as a string containing
 | |
| 	// r, followed by s (which are 160-bit integers, without lengths or
 | |
| 	// padding, unsigned, and in network byte order).
 | |
| 	// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
 | |
| 	if len(sig.Blob) != 40 {
 | |
| 		return errors.New("ssh: DSA signature parse error")
 | |
| 	}
 | |
| 	r := new(big.Int).SetBytes(sig.Blob[:20])
 | |
| 	s := new(big.Int).SetBytes(sig.Blob[20:])
 | |
| 	if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return errors.New("ssh: signature did not verify")
 | |
| }
 | |
| 
 | |
| func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
 | |
| 	return (*dsa.PublicKey)(k)
 | |
| }
 | |
| 
 | |
| type dsaPrivateKey struct {
 | |
| 	*dsa.PrivateKey
 | |
| }
 | |
| 
 | |
| func (k *dsaPrivateKey) PublicKey() PublicKey {
 | |
| 	return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
 | |
| }
 | |
| 
 | |
| func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
 | |
| 	return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
 | |
| }
 | |
| 
 | |
| func (k *dsaPrivateKey) Algorithms() []string {
 | |
| 	return []string{k.PublicKey().Type()}
 | |
| }
 | |
| 
 | |
| func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
 | |
| 	if algorithm != "" && algorithm != k.PublicKey().Type() {
 | |
| 		return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
 | |
| 	}
 | |
| 
 | |
| 	h := hashFuncs[k.PublicKey().Type()].New()
 | |
| 	h.Write(data)
 | |
| 	digest := h.Sum(nil)
 | |
| 	r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	sig := make([]byte, 40)
 | |
| 	rb := r.Bytes()
 | |
| 	sb := s.Bytes()
 | |
| 
 | |
| 	copy(sig[20-len(rb):20], rb)
 | |
| 	copy(sig[40-len(sb):], sb)
 | |
| 
 | |
| 	return &Signature{
 | |
| 		Format: k.PublicKey().Type(),
 | |
| 		Blob:   sig,
 | |
| 	}, nil
 | |
| }
 | |
| 
 | |
| type ecdsaPublicKey ecdsa.PublicKey
 | |
| 
 | |
| func (k *ecdsaPublicKey) Type() string {
 | |
| 	return "ecdsa-sha2-" + k.nistID()
 | |
| }
 | |
| 
 | |
| func (k *ecdsaPublicKey) nistID() string {
 | |
| 	switch k.Params().BitSize {
 | |
| 	case 256:
 | |
| 		return "nistp256"
 | |
| 	case 384:
 | |
| 		return "nistp384"
 | |
| 	case 521:
 | |
| 		return "nistp521"
 | |
| 	}
 | |
| 	panic("ssh: unsupported ecdsa key size")
 | |
| }
 | |
| 
 | |
| type ed25519PublicKey ed25519.PublicKey
 | |
| 
 | |
| func (k ed25519PublicKey) Type() string {
 | |
| 	return KeyAlgoED25519
 | |
| }
 | |
| 
 | |
| func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
 | |
| 	var w struct {
 | |
| 		KeyBytes []byte
 | |
| 		Rest     []byte `ssh:"rest"`
 | |
| 	}
 | |
| 
 | |
| 	if err := Unmarshal(in, &w); err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
 | |
| 		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
 | |
| 	}
 | |
| 
 | |
| 	return ed25519PublicKey(w.KeyBytes), w.Rest, nil
 | |
| }
 | |
| 
 | |
| func (k ed25519PublicKey) Marshal() []byte {
 | |
| 	w := struct {
 | |
| 		Name     string
 | |
| 		KeyBytes []byte
 | |
| 	}{
 | |
| 		KeyAlgoED25519,
 | |
| 		[]byte(k),
 | |
| 	}
 | |
| 	return Marshal(&w)
 | |
| }
 | |
| 
 | |
| func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
 | |
| 	if sig.Format != k.Type() {
 | |
| 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 | |
| 	}
 | |
| 	if l := len(k); l != ed25519.PublicKeySize {
 | |
| 		return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
 | |
| 	}
 | |
| 
 | |
| 	if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
 | |
| 		return errors.New("ssh: signature did not verify")
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
 | |
| 	return ed25519.PublicKey(k)
 | |
| }
 | |
| 
 | |
| func supportedEllipticCurve(curve elliptic.Curve) bool {
 | |
| 	return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
 | |
| }
 | |
| 
 | |
| // parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
 | |
| func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
 | |
| 	var w struct {
 | |
| 		Curve    string
 | |
| 		KeyBytes []byte
 | |
| 		Rest     []byte `ssh:"rest"`
 | |
| 	}
 | |
| 
 | |
| 	if err := Unmarshal(in, &w); err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	key := new(ecdsa.PublicKey)
 | |
| 
 | |
| 	switch w.Curve {
 | |
| 	case "nistp256":
 | |
| 		key.Curve = elliptic.P256()
 | |
| 	case "nistp384":
 | |
| 		key.Curve = elliptic.P384()
 | |
| 	case "nistp521":
 | |
| 		key.Curve = elliptic.P521()
 | |
| 	default:
 | |
| 		return nil, nil, errors.New("ssh: unsupported curve")
 | |
| 	}
 | |
| 
 | |
| 	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
 | |
| 	if key.X == nil || key.Y == nil {
 | |
| 		return nil, nil, errors.New("ssh: invalid curve point")
 | |
| 	}
 | |
| 	return (*ecdsaPublicKey)(key), w.Rest, nil
 | |
| }
 | |
| 
 | |
| func (k *ecdsaPublicKey) Marshal() []byte {
 | |
| 	// See RFC 5656, section 3.1.
 | |
| 	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
 | |
| 	// ECDSA publickey struct layout should match the struct used by
 | |
| 	// parseECDSACert in the x/crypto/ssh/agent package.
 | |
| 	w := struct {
 | |
| 		Name string
 | |
| 		ID   string
 | |
| 		Key  []byte
 | |
| 	}{
 | |
| 		k.Type(),
 | |
| 		k.nistID(),
 | |
| 		keyBytes,
 | |
| 	}
 | |
| 
 | |
| 	return Marshal(&w)
 | |
| }
 | |
| 
 | |
| func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
 | |
| 	if sig.Format != k.Type() {
 | |
| 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 | |
| 	}
 | |
| 
 | |
| 	h := hashFuncs[sig.Format].New()
 | |
| 	h.Write(data)
 | |
| 	digest := h.Sum(nil)
 | |
| 
 | |
| 	// Per RFC 5656, section 3.1.2,
 | |
| 	// The ecdsa_signature_blob value has the following specific encoding:
 | |
| 	//    mpint    r
 | |
| 	//    mpint    s
 | |
| 	var ecSig struct {
 | |
| 		R *big.Int
 | |
| 		S *big.Int
 | |
| 	}
 | |
| 
 | |
| 	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return errors.New("ssh: signature did not verify")
 | |
| }
 | |
| 
 | |
| func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
 | |
| 	return (*ecdsa.PublicKey)(k)
 | |
| }
 | |
| 
 | |
| // skFields holds the additional fields present in U2F/FIDO2 signatures.
 | |
| // See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
 | |
| type skFields struct {
 | |
| 	// Flags contains U2F/FIDO2 flags such as 'user present'
 | |
| 	Flags byte
 | |
| 	// Counter is a monotonic signature counter which can be
 | |
| 	// used to detect concurrent use of a private key, should
 | |
| 	// it be extracted from hardware.
 | |
| 	Counter uint32
 | |
| }
 | |
| 
 | |
| type skECDSAPublicKey struct {
 | |
| 	// application is a URL-like string, typically "ssh:" for SSH.
 | |
| 	// see openssh/PROTOCOL.u2f for details.
 | |
| 	application string
 | |
| 	ecdsa.PublicKey
 | |
| }
 | |
| 
 | |
| func (k *skECDSAPublicKey) Type() string {
 | |
| 	return KeyAlgoSKECDSA256
 | |
| }
 | |
| 
 | |
| func (k *skECDSAPublicKey) nistID() string {
 | |
| 	return "nistp256"
 | |
| }
 | |
| 
 | |
| func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
 | |
| 	var w struct {
 | |
| 		Curve       string
 | |
| 		KeyBytes    []byte
 | |
| 		Application string
 | |
| 		Rest        []byte `ssh:"rest"`
 | |
| 	}
 | |
| 
 | |
| 	if err := Unmarshal(in, &w); err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	key := new(skECDSAPublicKey)
 | |
| 	key.application = w.Application
 | |
| 
 | |
| 	if w.Curve != "nistp256" {
 | |
| 		return nil, nil, errors.New("ssh: unsupported curve")
 | |
| 	}
 | |
| 	key.Curve = elliptic.P256()
 | |
| 
 | |
| 	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
 | |
| 	if key.X == nil || key.Y == nil {
 | |
| 		return nil, nil, errors.New("ssh: invalid curve point")
 | |
| 	}
 | |
| 
 | |
| 	return key, w.Rest, nil
 | |
| }
 | |
| 
 | |
| func (k *skECDSAPublicKey) Marshal() []byte {
 | |
| 	// See RFC 5656, section 3.1.
 | |
| 	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
 | |
| 	w := struct {
 | |
| 		Name        string
 | |
| 		ID          string
 | |
| 		Key         []byte
 | |
| 		Application string
 | |
| 	}{
 | |
| 		k.Type(),
 | |
| 		k.nistID(),
 | |
| 		keyBytes,
 | |
| 		k.application,
 | |
| 	}
 | |
| 
 | |
| 	return Marshal(&w)
 | |
| }
 | |
| 
 | |
| func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
 | |
| 	if sig.Format != k.Type() {
 | |
| 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 | |
| 	}
 | |
| 
 | |
| 	h := hashFuncs[sig.Format].New()
 | |
| 	h.Write([]byte(k.application))
 | |
| 	appDigest := h.Sum(nil)
 | |
| 
 | |
| 	h.Reset()
 | |
| 	h.Write(data)
 | |
| 	dataDigest := h.Sum(nil)
 | |
| 
 | |
| 	var ecSig struct {
 | |
| 		R *big.Int
 | |
| 		S *big.Int
 | |
| 	}
 | |
| 	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	var skf skFields
 | |
| 	if err := Unmarshal(sig.Rest, &skf); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	blob := struct {
 | |
| 		ApplicationDigest []byte `ssh:"rest"`
 | |
| 		Flags             byte
 | |
| 		Counter           uint32
 | |
| 		MessageDigest     []byte `ssh:"rest"`
 | |
| 	}{
 | |
| 		appDigest,
 | |
| 		skf.Flags,
 | |
| 		skf.Counter,
 | |
| 		dataDigest,
 | |
| 	}
 | |
| 
 | |
| 	original := Marshal(blob)
 | |
| 
 | |
| 	h.Reset()
 | |
| 	h.Write(original)
 | |
| 	digest := h.Sum(nil)
 | |
| 
 | |
| 	if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return errors.New("ssh: signature did not verify")
 | |
| }
 | |
| 
 | |
| func (k *skECDSAPublicKey) CryptoPublicKey() crypto.PublicKey {
 | |
| 	return &k.PublicKey
 | |
| }
 | |
| 
 | |
| type skEd25519PublicKey struct {
 | |
| 	// application is a URL-like string, typically "ssh:" for SSH.
 | |
| 	// see openssh/PROTOCOL.u2f for details.
 | |
| 	application string
 | |
| 	ed25519.PublicKey
 | |
| }
 | |
| 
 | |
| func (k *skEd25519PublicKey) Type() string {
 | |
| 	return KeyAlgoSKED25519
 | |
| }
 | |
| 
 | |
| func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
 | |
| 	var w struct {
 | |
| 		KeyBytes    []byte
 | |
| 		Application string
 | |
| 		Rest        []byte `ssh:"rest"`
 | |
| 	}
 | |
| 
 | |
| 	if err := Unmarshal(in, &w); err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
 | |
| 		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
 | |
| 	}
 | |
| 
 | |
| 	key := new(skEd25519PublicKey)
 | |
| 	key.application = w.Application
 | |
| 	key.PublicKey = ed25519.PublicKey(w.KeyBytes)
 | |
| 
 | |
| 	return key, w.Rest, nil
 | |
| }
 | |
| 
 | |
| func (k *skEd25519PublicKey) Marshal() []byte {
 | |
| 	w := struct {
 | |
| 		Name        string
 | |
| 		KeyBytes    []byte
 | |
| 		Application string
 | |
| 	}{
 | |
| 		KeyAlgoSKED25519,
 | |
| 		[]byte(k.PublicKey),
 | |
| 		k.application,
 | |
| 	}
 | |
| 	return Marshal(&w)
 | |
| }
 | |
| 
 | |
| func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
 | |
| 	if sig.Format != k.Type() {
 | |
| 		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
 | |
| 	}
 | |
| 	if l := len(k.PublicKey); l != ed25519.PublicKeySize {
 | |
| 		return fmt.Errorf("invalid size %d for Ed25519 public key", l)
 | |
| 	}
 | |
| 
 | |
| 	h := hashFuncs[sig.Format].New()
 | |
| 	h.Write([]byte(k.application))
 | |
| 	appDigest := h.Sum(nil)
 | |
| 
 | |
| 	h.Reset()
 | |
| 	h.Write(data)
 | |
| 	dataDigest := h.Sum(nil)
 | |
| 
 | |
| 	var edSig struct {
 | |
| 		Signature []byte `ssh:"rest"`
 | |
| 	}
 | |
| 
 | |
| 	if err := Unmarshal(sig.Blob, &edSig); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	var skf skFields
 | |
| 	if err := Unmarshal(sig.Rest, &skf); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	blob := struct {
 | |
| 		ApplicationDigest []byte `ssh:"rest"`
 | |
| 		Flags             byte
 | |
| 		Counter           uint32
 | |
| 		MessageDigest     []byte `ssh:"rest"`
 | |
| 	}{
 | |
| 		appDigest,
 | |
| 		skf.Flags,
 | |
| 		skf.Counter,
 | |
| 		dataDigest,
 | |
| 	}
 | |
| 
 | |
| 	original := Marshal(blob)
 | |
| 
 | |
| 	if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
 | |
| 		return errors.New("ssh: signature did not verify")
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (k *skEd25519PublicKey) CryptoPublicKey() crypto.PublicKey {
 | |
| 	return k.PublicKey
 | |
| }
 | |
| 
 | |
| // NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
 | |
| // *ecdsa.PrivateKey or any other crypto.Signer and returns a
 | |
| // corresponding Signer instance. ECDSA keys must use P-256, P-384 or
 | |
| // P-521. DSA keys must use parameter size L1024N160.
 | |
| func NewSignerFromKey(key interface{}) (Signer, error) {
 | |
| 	switch key := key.(type) {
 | |
| 	case crypto.Signer:
 | |
| 		return NewSignerFromSigner(key)
 | |
| 	case *dsa.PrivateKey:
 | |
| 		return newDSAPrivateKey(key)
 | |
| 	default:
 | |
| 		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
 | |
| 	if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return &dsaPrivateKey{key}, nil
 | |
| }
 | |
| 
 | |
| type wrappedSigner struct {
 | |
| 	signer crypto.Signer
 | |
| 	pubKey PublicKey
 | |
| }
 | |
| 
 | |
| // NewSignerFromSigner takes any crypto.Signer implementation and
 | |
| // returns a corresponding Signer interface. This can be used, for
 | |
| // example, with keys kept in hardware modules.
 | |
| func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
 | |
| 	pubKey, err := NewPublicKey(signer.Public())
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return &wrappedSigner{signer, pubKey}, nil
 | |
| }
 | |
| 
 | |
| func (s *wrappedSigner) PublicKey() PublicKey {
 | |
| 	return s.pubKey
 | |
| }
 | |
| 
 | |
| func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
 | |
| 	return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
 | |
| }
 | |
| 
 | |
| func (s *wrappedSigner) Algorithms() []string {
 | |
| 	return algorithmsForKeyFormat(s.pubKey.Type())
 | |
| }
 | |
| 
 | |
| func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
 | |
| 	if algorithm == "" {
 | |
| 		algorithm = s.pubKey.Type()
 | |
| 	}
 | |
| 
 | |
| 	if !contains(s.Algorithms(), algorithm) {
 | |
| 		return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
 | |
| 	}
 | |
| 
 | |
| 	hashFunc := hashFuncs[algorithm]
 | |
| 	var digest []byte
 | |
| 	if hashFunc != 0 {
 | |
| 		h := hashFunc.New()
 | |
| 		h.Write(data)
 | |
| 		digest = h.Sum(nil)
 | |
| 	} else {
 | |
| 		digest = data
 | |
| 	}
 | |
| 
 | |
| 	signature, err := s.signer.Sign(rand, digest, hashFunc)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
 | |
| 	// for ECDSA and DSA, but that's not the encoding expected by SSH, so
 | |
| 	// re-encode.
 | |
| 	switch s.pubKey.(type) {
 | |
| 	case *ecdsaPublicKey, *dsaPublicKey:
 | |
| 		type asn1Signature struct {
 | |
| 			R, S *big.Int
 | |
| 		}
 | |
| 		asn1Sig := new(asn1Signature)
 | |
| 		_, err := asn1.Unmarshal(signature, asn1Sig)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		switch s.pubKey.(type) {
 | |
| 		case *ecdsaPublicKey:
 | |
| 			signature = Marshal(asn1Sig)
 | |
| 
 | |
| 		case *dsaPublicKey:
 | |
| 			signature = make([]byte, 40)
 | |
| 			r := asn1Sig.R.Bytes()
 | |
| 			s := asn1Sig.S.Bytes()
 | |
| 			copy(signature[20-len(r):20], r)
 | |
| 			copy(signature[40-len(s):40], s)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return &Signature{
 | |
| 		Format: algorithm,
 | |
| 		Blob:   signature,
 | |
| 	}, nil
 | |
| }
 | |
| 
 | |
| // NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
 | |
| // or ed25519.PublicKey returns a corresponding PublicKey instance.
 | |
| // ECDSA keys must use P-256, P-384 or P-521.
 | |
| func NewPublicKey(key interface{}) (PublicKey, error) {
 | |
| 	switch key := key.(type) {
 | |
| 	case *rsa.PublicKey:
 | |
| 		return (*rsaPublicKey)(key), nil
 | |
| 	case *ecdsa.PublicKey:
 | |
| 		if !supportedEllipticCurve(key.Curve) {
 | |
| 			return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
 | |
| 		}
 | |
| 		return (*ecdsaPublicKey)(key), nil
 | |
| 	case *dsa.PublicKey:
 | |
| 		return (*dsaPublicKey)(key), nil
 | |
| 	case ed25519.PublicKey:
 | |
| 		if l := len(key); l != ed25519.PublicKeySize {
 | |
| 			return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
 | |
| 		}
 | |
| 		return ed25519PublicKey(key), nil
 | |
| 	default:
 | |
| 		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
 | |
| // the same keys as ParseRawPrivateKey. If the private key is encrypted, it
 | |
| // will return a PassphraseMissingError.
 | |
| func ParsePrivateKey(pemBytes []byte) (Signer, error) {
 | |
| 	key, err := ParseRawPrivateKey(pemBytes)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return NewSignerFromKey(key)
 | |
| }
 | |
| 
 | |
| // ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
 | |
| // key and passphrase. It supports the same keys as
 | |
| // ParseRawPrivateKeyWithPassphrase.
 | |
| func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
 | |
| 	key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return NewSignerFromKey(key)
 | |
| }
 | |
| 
 | |
| // encryptedBlock tells whether a private key is
 | |
| // encrypted by examining its Proc-Type header
 | |
| // for a mention of ENCRYPTED
 | |
| // according to RFC 1421 Section 4.6.1.1.
 | |
| func encryptedBlock(block *pem.Block) bool {
 | |
| 	return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
 | |
| }
 | |
| 
 | |
| // A PassphraseMissingError indicates that parsing this private key requires a
 | |
| // passphrase. Use ParsePrivateKeyWithPassphrase.
 | |
| type PassphraseMissingError struct {
 | |
| 	// PublicKey will be set if the private key format includes an unencrypted
 | |
| 	// public key along with the encrypted private key.
 | |
| 	PublicKey PublicKey
 | |
| }
 | |
| 
 | |
| func (*PassphraseMissingError) Error() string {
 | |
| 	return "ssh: this private key is passphrase protected"
 | |
| }
 | |
| 
 | |
| // ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports
 | |
| // RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH
 | |
| // formats. If the private key is encrypted, it will return a PassphraseMissingError.
 | |
| func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
 | |
| 	block, _ := pem.Decode(pemBytes)
 | |
| 	if block == nil {
 | |
| 		return nil, errors.New("ssh: no key found")
 | |
| 	}
 | |
| 
 | |
| 	if encryptedBlock(block) {
 | |
| 		return nil, &PassphraseMissingError{}
 | |
| 	}
 | |
| 
 | |
| 	switch block.Type {
 | |
| 	case "RSA PRIVATE KEY":
 | |
| 		return x509.ParsePKCS1PrivateKey(block.Bytes)
 | |
| 	// RFC5208 - https://tools.ietf.org/html/rfc5208
 | |
| 	case "PRIVATE KEY":
 | |
| 		return x509.ParsePKCS8PrivateKey(block.Bytes)
 | |
| 	case "EC PRIVATE KEY":
 | |
| 		return x509.ParseECPrivateKey(block.Bytes)
 | |
| 	case "DSA PRIVATE KEY":
 | |
| 		return ParseDSAPrivateKey(block.Bytes)
 | |
| 	case "OPENSSH PRIVATE KEY":
 | |
| 		return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
 | |
| 	default:
 | |
| 		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
 | |
| // passphrase from a PEM encoded private key. If the passphrase is wrong, it
 | |
| // will return x509.IncorrectPasswordError.
 | |
| func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
 | |
| 	block, _ := pem.Decode(pemBytes)
 | |
| 	if block == nil {
 | |
| 		return nil, errors.New("ssh: no key found")
 | |
| 	}
 | |
| 
 | |
| 	if block.Type == "OPENSSH PRIVATE KEY" {
 | |
| 		return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
 | |
| 	}
 | |
| 
 | |
| 	if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
 | |
| 		return nil, errors.New("ssh: not an encrypted key")
 | |
| 	}
 | |
| 
 | |
| 	buf, err := x509.DecryptPEMBlock(block, passphrase)
 | |
| 	if err != nil {
 | |
| 		if err == x509.IncorrectPasswordError {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
 | |
| 	}
 | |
| 
 | |
| 	var result interface{}
 | |
| 
 | |
| 	switch block.Type {
 | |
| 	case "RSA PRIVATE KEY":
 | |
| 		result, err = x509.ParsePKCS1PrivateKey(buf)
 | |
| 	case "EC PRIVATE KEY":
 | |
| 		result, err = x509.ParseECPrivateKey(buf)
 | |
| 	case "DSA PRIVATE KEY":
 | |
| 		result, err = ParseDSAPrivateKey(buf)
 | |
| 	default:
 | |
| 		err = fmt.Errorf("ssh: unsupported key type %q", block.Type)
 | |
| 	}
 | |
| 	// Because of deficiencies in the format, DecryptPEMBlock does not always
 | |
| 	// detect an incorrect password. In these cases decrypted DER bytes is
 | |
| 	// random noise. If the parsing of the key returns an asn1.StructuralError
 | |
| 	// we return x509.IncorrectPasswordError.
 | |
| 	if _, ok := err.(asn1.StructuralError); ok {
 | |
| 		return nil, x509.IncorrectPasswordError
 | |
| 	}
 | |
| 
 | |
| 	return result, err
 | |
| }
 | |
| 
 | |
| // ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
 | |
| // specified by the OpenSSL DSA man page.
 | |
| func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
 | |
| 	var k struct {
 | |
| 		Version int
 | |
| 		P       *big.Int
 | |
| 		Q       *big.Int
 | |
| 		G       *big.Int
 | |
| 		Pub     *big.Int
 | |
| 		Priv    *big.Int
 | |
| 	}
 | |
| 	rest, err := asn1.Unmarshal(der, &k)
 | |
| 	if err != nil {
 | |
| 		return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
 | |
| 	}
 | |
| 	if len(rest) > 0 {
 | |
| 		return nil, errors.New("ssh: garbage after DSA key")
 | |
| 	}
 | |
| 
 | |
| 	return &dsa.PrivateKey{
 | |
| 		PublicKey: dsa.PublicKey{
 | |
| 			Parameters: dsa.Parameters{
 | |
| 				P: k.P,
 | |
| 				Q: k.Q,
 | |
| 				G: k.G,
 | |
| 			},
 | |
| 			Y: k.Pub,
 | |
| 		},
 | |
| 		X: k.Priv,
 | |
| 	}, nil
 | |
| }
 | |
| 
 | |
| func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
 | |
| 	if kdfName != "none" || cipherName != "none" {
 | |
| 		return nil, &PassphraseMissingError{}
 | |
| 	}
 | |
| 	if kdfOpts != "" {
 | |
| 		return nil, errors.New("ssh: invalid openssh private key")
 | |
| 	}
 | |
| 	return privKeyBlock, nil
 | |
| }
 | |
| 
 | |
| func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
 | |
| 	return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
 | |
| 		if kdfName == "none" || cipherName == "none" {
 | |
| 			return nil, errors.New("ssh: key is not password protected")
 | |
| 		}
 | |
| 		if kdfName != "bcrypt" {
 | |
| 			return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
 | |
| 		}
 | |
| 
 | |
| 		var opts struct {
 | |
| 			Salt   string
 | |
| 			Rounds uint32
 | |
| 		}
 | |
| 		if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		key, iv := k[:32], k[32:]
 | |
| 
 | |
| 		c, err := aes.NewCipher(key)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		switch cipherName {
 | |
| 		case "aes256-ctr":
 | |
| 			ctr := cipher.NewCTR(c, iv)
 | |
| 			ctr.XORKeyStream(privKeyBlock, privKeyBlock)
 | |
| 		case "aes256-cbc":
 | |
| 			if len(privKeyBlock)%c.BlockSize() != 0 {
 | |
| 				return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
 | |
| 			}
 | |
| 			cbc := cipher.NewCBCDecrypter(c, iv)
 | |
| 			cbc.CryptBlocks(privKeyBlock, privKeyBlock)
 | |
| 		default:
 | |
| 			return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
 | |
| 		}
 | |
| 
 | |
| 		return privKeyBlock, nil
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func unencryptedOpenSSHMarshaler(privKeyBlock []byte) ([]byte, string, string, string, error) {
 | |
| 	key := generateOpenSSHPadding(privKeyBlock, 8)
 | |
| 	return key, "none", "none", "", nil
 | |
| }
 | |
| 
 | |
| func passphraseProtectedOpenSSHMarshaler(passphrase []byte) openSSHEncryptFunc {
 | |
| 	return func(privKeyBlock []byte) ([]byte, string, string, string, error) {
 | |
| 		salt := make([]byte, 16)
 | |
| 		if _, err := rand.Read(salt); err != nil {
 | |
| 			return nil, "", "", "", err
 | |
| 		}
 | |
| 
 | |
| 		opts := struct {
 | |
| 			Salt   []byte
 | |
| 			Rounds uint32
 | |
| 		}{salt, 16}
 | |
| 
 | |
| 		// Derive key to encrypt the private key block.
 | |
| 		k, err := bcrypt_pbkdf.Key(passphrase, salt, int(opts.Rounds), 32+aes.BlockSize)
 | |
| 		if err != nil {
 | |
| 			return nil, "", "", "", err
 | |
| 		}
 | |
| 
 | |
| 		// Add padding matching the block size of AES.
 | |
| 		keyBlock := generateOpenSSHPadding(privKeyBlock, aes.BlockSize)
 | |
| 
 | |
| 		// Encrypt the private key using the derived secret.
 | |
| 
 | |
| 		dst := make([]byte, len(keyBlock))
 | |
| 		key, iv := k[:32], k[32:]
 | |
| 		block, err := aes.NewCipher(key)
 | |
| 		if err != nil {
 | |
| 			return nil, "", "", "", err
 | |
| 		}
 | |
| 
 | |
| 		stream := cipher.NewCTR(block, iv)
 | |
| 		stream.XORKeyStream(dst, keyBlock)
 | |
| 
 | |
| 		return dst, "aes256-ctr", "bcrypt", string(Marshal(opts)), nil
 | |
| 	}
 | |
| }
 | |
| 
 | |
| const privateKeyAuthMagic = "openssh-key-v1\x00"
 | |
| 
 | |
| type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
 | |
| type openSSHEncryptFunc func(PrivKeyBlock []byte) (ProtectedKeyBlock []byte, cipherName, kdfName, kdfOptions string, err error)
 | |
| 
 | |
| type openSSHEncryptedPrivateKey struct {
 | |
| 	CipherName   string
 | |
| 	KdfName      string
 | |
| 	KdfOpts      string
 | |
| 	NumKeys      uint32
 | |
| 	PubKey       []byte
 | |
| 	PrivKeyBlock []byte
 | |
| }
 | |
| 
 | |
| type openSSHPrivateKey struct {
 | |
| 	Check1  uint32
 | |
| 	Check2  uint32
 | |
| 	Keytype string
 | |
| 	Rest    []byte `ssh:"rest"`
 | |
| }
 | |
| 
 | |
| type openSSHRSAPrivateKey struct {
 | |
| 	N       *big.Int
 | |
| 	E       *big.Int
 | |
| 	D       *big.Int
 | |
| 	Iqmp    *big.Int
 | |
| 	P       *big.Int
 | |
| 	Q       *big.Int
 | |
| 	Comment string
 | |
| 	Pad     []byte `ssh:"rest"`
 | |
| }
 | |
| 
 | |
| type openSSHEd25519PrivateKey struct {
 | |
| 	Pub     []byte
 | |
| 	Priv    []byte
 | |
| 	Comment string
 | |
| 	Pad     []byte `ssh:"rest"`
 | |
| }
 | |
| 
 | |
| type openSSHECDSAPrivateKey struct {
 | |
| 	Curve   string
 | |
| 	Pub     []byte
 | |
| 	D       *big.Int
 | |
| 	Comment string
 | |
| 	Pad     []byte `ssh:"rest"`
 | |
| }
 | |
| 
 | |
| // parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
 | |
| // function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
 | |
| // as the decrypt function to parse an unencrypted private key. See
 | |
| // https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
 | |
| func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
 | |
| 	if len(key) < len(privateKeyAuthMagic) || string(key[:len(privateKeyAuthMagic)]) != privateKeyAuthMagic {
 | |
| 		return nil, errors.New("ssh: invalid openssh private key format")
 | |
| 	}
 | |
| 	remaining := key[len(privateKeyAuthMagic):]
 | |
| 
 | |
| 	var w openSSHEncryptedPrivateKey
 | |
| 	if err := Unmarshal(remaining, &w); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if w.NumKeys != 1 {
 | |
| 		// We only support single key files, and so does OpenSSH.
 | |
| 		// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
 | |
| 		return nil, errors.New("ssh: multi-key files are not supported")
 | |
| 	}
 | |
| 
 | |
| 	privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
 | |
| 	if err != nil {
 | |
| 		if err, ok := err.(*PassphraseMissingError); ok {
 | |
| 			pub, errPub := ParsePublicKey(w.PubKey)
 | |
| 			if errPub != nil {
 | |
| 				return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
 | |
| 			}
 | |
| 			err.PublicKey = pub
 | |
| 		}
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	var pk1 openSSHPrivateKey
 | |
| 	if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
 | |
| 		if w.CipherName != "none" {
 | |
| 			return nil, x509.IncorrectPasswordError
 | |
| 		}
 | |
| 		return nil, errors.New("ssh: malformed OpenSSH key")
 | |
| 	}
 | |
| 
 | |
| 	switch pk1.Keytype {
 | |
| 	case KeyAlgoRSA:
 | |
| 		var key openSSHRSAPrivateKey
 | |
| 		if err := Unmarshal(pk1.Rest, &key); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		pk := &rsa.PrivateKey{
 | |
| 			PublicKey: rsa.PublicKey{
 | |
| 				N: key.N,
 | |
| 				E: int(key.E.Int64()),
 | |
| 			},
 | |
| 			D:      key.D,
 | |
| 			Primes: []*big.Int{key.P, key.Q},
 | |
| 		}
 | |
| 
 | |
| 		if err := pk.Validate(); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		pk.Precompute()
 | |
| 
 | |
| 		return pk, nil
 | |
| 	case KeyAlgoED25519:
 | |
| 		var key openSSHEd25519PrivateKey
 | |
| 		if err := Unmarshal(pk1.Rest, &key); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		if len(key.Priv) != ed25519.PrivateKeySize {
 | |
| 			return nil, errors.New("ssh: private key unexpected length")
 | |
| 		}
 | |
| 
 | |
| 		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
 | |
| 		copy(pk, key.Priv)
 | |
| 		return &pk, nil
 | |
| 	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
 | |
| 		var key openSSHECDSAPrivateKey
 | |
| 		if err := Unmarshal(pk1.Rest, &key); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		var curve elliptic.Curve
 | |
| 		switch key.Curve {
 | |
| 		case "nistp256":
 | |
| 			curve = elliptic.P256()
 | |
| 		case "nistp384":
 | |
| 			curve = elliptic.P384()
 | |
| 		case "nistp521":
 | |
| 			curve = elliptic.P521()
 | |
| 		default:
 | |
| 			return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
 | |
| 		}
 | |
| 
 | |
| 		X, Y := elliptic.Unmarshal(curve, key.Pub)
 | |
| 		if X == nil || Y == nil {
 | |
| 			return nil, errors.New("ssh: failed to unmarshal public key")
 | |
| 		}
 | |
| 
 | |
| 		if key.D.Cmp(curve.Params().N) >= 0 {
 | |
| 			return nil, errors.New("ssh: scalar is out of range")
 | |
| 		}
 | |
| 
 | |
| 		x, y := curve.ScalarBaseMult(key.D.Bytes())
 | |
| 		if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
 | |
| 			return nil, errors.New("ssh: public key does not match private key")
 | |
| 		}
 | |
| 
 | |
| 		return &ecdsa.PrivateKey{
 | |
| 			PublicKey: ecdsa.PublicKey{
 | |
| 				Curve: curve,
 | |
| 				X:     X,
 | |
| 				Y:     Y,
 | |
| 			},
 | |
| 			D: key.D,
 | |
| 		}, nil
 | |
| 	default:
 | |
| 		return nil, errors.New("ssh: unhandled key type")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func marshalOpenSSHPrivateKey(key crypto.PrivateKey, comment string, encrypt openSSHEncryptFunc) (*pem.Block, error) {
 | |
| 	var w openSSHEncryptedPrivateKey
 | |
| 	var pk1 openSSHPrivateKey
 | |
| 
 | |
| 	// Random check bytes.
 | |
| 	var check uint32
 | |
| 	if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	pk1.Check1 = check
 | |
| 	pk1.Check2 = check
 | |
| 	w.NumKeys = 1
 | |
| 
 | |
| 	// Use a []byte directly on ed25519 keys.
 | |
| 	if k, ok := key.(*ed25519.PrivateKey); ok {
 | |
| 		key = *k
 | |
| 	}
 | |
| 
 | |
| 	switch k := key.(type) {
 | |
| 	case *rsa.PrivateKey:
 | |
| 		E := new(big.Int).SetInt64(int64(k.PublicKey.E))
 | |
| 		// Marshal public key:
 | |
| 		// E and N are in reversed order in the public and private key.
 | |
| 		pubKey := struct {
 | |
| 			KeyType string
 | |
| 			E       *big.Int
 | |
| 			N       *big.Int
 | |
| 		}{
 | |
| 			KeyAlgoRSA,
 | |
| 			E, k.PublicKey.N,
 | |
| 		}
 | |
| 		w.PubKey = Marshal(pubKey)
 | |
| 
 | |
| 		// Marshal private key.
 | |
| 		key := openSSHRSAPrivateKey{
 | |
| 			N:       k.PublicKey.N,
 | |
| 			E:       E,
 | |
| 			D:       k.D,
 | |
| 			Iqmp:    k.Precomputed.Qinv,
 | |
| 			P:       k.Primes[0],
 | |
| 			Q:       k.Primes[1],
 | |
| 			Comment: comment,
 | |
| 		}
 | |
| 		pk1.Keytype = KeyAlgoRSA
 | |
| 		pk1.Rest = Marshal(key)
 | |
| 	case ed25519.PrivateKey:
 | |
| 		pub := make([]byte, ed25519.PublicKeySize)
 | |
| 		priv := make([]byte, ed25519.PrivateKeySize)
 | |
| 		copy(pub, k[32:])
 | |
| 		copy(priv, k)
 | |
| 
 | |
| 		// Marshal public key.
 | |
| 		pubKey := struct {
 | |
| 			KeyType string
 | |
| 			Pub     []byte
 | |
| 		}{
 | |
| 			KeyAlgoED25519, pub,
 | |
| 		}
 | |
| 		w.PubKey = Marshal(pubKey)
 | |
| 
 | |
| 		// Marshal private key.
 | |
| 		key := openSSHEd25519PrivateKey{
 | |
| 			Pub:     pub,
 | |
| 			Priv:    priv,
 | |
| 			Comment: comment,
 | |
| 		}
 | |
| 		pk1.Keytype = KeyAlgoED25519
 | |
| 		pk1.Rest = Marshal(key)
 | |
| 	case *ecdsa.PrivateKey:
 | |
| 		var curve, keyType string
 | |
| 		switch name := k.Curve.Params().Name; name {
 | |
| 		case "P-256":
 | |
| 			curve = "nistp256"
 | |
| 			keyType = KeyAlgoECDSA256
 | |
| 		case "P-384":
 | |
| 			curve = "nistp384"
 | |
| 			keyType = KeyAlgoECDSA384
 | |
| 		case "P-521":
 | |
| 			curve = "nistp521"
 | |
| 			keyType = KeyAlgoECDSA521
 | |
| 		default:
 | |
| 			return nil, errors.New("ssh: unhandled elliptic curve " + name)
 | |
| 		}
 | |
| 
 | |
| 		pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y)
 | |
| 
 | |
| 		// Marshal public key.
 | |
| 		pubKey := struct {
 | |
| 			KeyType string
 | |
| 			Curve   string
 | |
| 			Pub     []byte
 | |
| 		}{
 | |
| 			keyType, curve, pub,
 | |
| 		}
 | |
| 		w.PubKey = Marshal(pubKey)
 | |
| 
 | |
| 		// Marshal private key.
 | |
| 		key := openSSHECDSAPrivateKey{
 | |
| 			Curve:   curve,
 | |
| 			Pub:     pub,
 | |
| 			D:       k.D,
 | |
| 			Comment: comment,
 | |
| 		}
 | |
| 		pk1.Keytype = keyType
 | |
| 		pk1.Rest = Marshal(key)
 | |
| 	default:
 | |
| 		return nil, fmt.Errorf("ssh: unsupported key type %T", k)
 | |
| 	}
 | |
| 
 | |
| 	var err error
 | |
| 	// Add padding and encrypt the key if necessary.
 | |
| 	w.PrivKeyBlock, w.CipherName, w.KdfName, w.KdfOpts, err = encrypt(Marshal(pk1))
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	b := Marshal(w)
 | |
| 	block := &pem.Block{
 | |
| 		Type:  "OPENSSH PRIVATE KEY",
 | |
| 		Bytes: append([]byte(privateKeyAuthMagic), b...),
 | |
| 	}
 | |
| 	return block, nil
 | |
| }
 | |
| 
 | |
| func checkOpenSSHKeyPadding(pad []byte) error {
 | |
| 	for i, b := range pad {
 | |
| 		if int(b) != i+1 {
 | |
| 			return errors.New("ssh: padding not as expected")
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func generateOpenSSHPadding(block []byte, blockSize int) []byte {
 | |
| 	for i, l := 0, len(block); (l+i)%blockSize != 0; i++ {
 | |
| 		block = append(block, byte(i+1))
 | |
| 	}
 | |
| 	return block
 | |
| }
 | |
| 
 | |
| // FingerprintLegacyMD5 returns the user presentation of the key's
 | |
| // fingerprint as described by RFC 4716 section 4.
 | |
| func FingerprintLegacyMD5(pubKey PublicKey) string {
 | |
| 	md5sum := md5.Sum(pubKey.Marshal())
 | |
| 	hexarray := make([]string, len(md5sum))
 | |
| 	for i, c := range md5sum {
 | |
| 		hexarray[i] = hex.EncodeToString([]byte{c})
 | |
| 	}
 | |
| 	return strings.Join(hexarray, ":")
 | |
| }
 | |
| 
 | |
| // FingerprintSHA256 returns the user presentation of the key's
 | |
| // fingerprint as unpadded base64 encoded sha256 hash.
 | |
| // This format was introduced from OpenSSH 6.8.
 | |
| // https://www.openssh.com/txt/release-6.8
 | |
| // https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
 | |
| func FingerprintSHA256(pubKey PublicKey) string {
 | |
| 	sha256sum := sha256.Sum256(pubKey.Marshal())
 | |
| 	hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
 | |
| 	return "SHA256:" + hash
 | |
| }
 |