forked from toolshed/abra
		
	
		
			
				
	
	
		
			1124 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1124 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2019+ Klaus Post. All rights reserved.
 | |
| // License information can be found in the LICENSE file.
 | |
| // Based on work by Yann Collet, released under BSD License.
 | |
| 
 | |
| package zstd
 | |
| 
 | |
| import "fmt"
 | |
| 
 | |
| const (
 | |
| 	dFastLongTableBits = 17                      // Bits used in the long match table
 | |
| 	dFastLongTableSize = 1 << dFastLongTableBits // Size of the table
 | |
| 	dFastLongTableMask = dFastLongTableSize - 1  // Mask for table indices. Redundant, but can eliminate bounds checks.
 | |
| 	dFastLongLen       = 8                       // Bytes used for table hash
 | |
| 
 | |
| 	dLongTableShardCnt  = 1 << (dFastLongTableBits - dictShardBits) // Number of shards in the table
 | |
| 	dLongTableShardSize = dFastLongTableSize / tableShardCnt        // Size of an individual shard
 | |
| 
 | |
| 	dFastShortTableBits = tableBits                // Bits used in the short match table
 | |
| 	dFastShortTableSize = 1 << dFastShortTableBits // Size of the table
 | |
| 	dFastShortTableMask = dFastShortTableSize - 1  // Mask for table indices. Redundant, but can eliminate bounds checks.
 | |
| 	dFastShortLen       = 5                        // Bytes used for table hash
 | |
| 
 | |
| )
 | |
| 
 | |
| type doubleFastEncoder struct {
 | |
| 	fastEncoder
 | |
| 	longTable [dFastLongTableSize]tableEntry
 | |
| }
 | |
| 
 | |
| type doubleFastEncoderDict struct {
 | |
| 	fastEncoderDict
 | |
| 	longTable           [dFastLongTableSize]tableEntry
 | |
| 	dictLongTable       []tableEntry
 | |
| 	longTableShardDirty [dLongTableShardCnt]bool
 | |
| }
 | |
| 
 | |
| // Encode mimmics functionality in zstd_dfast.c
 | |
| func (e *doubleFastEncoder) Encode(blk *blockEnc, src []byte) {
 | |
| 	const (
 | |
| 		// Input margin is the number of bytes we read (8)
 | |
| 		// and the maximum we will read ahead (2)
 | |
| 		inputMargin            = 8 + 2
 | |
| 		minNonLiteralBlockSize = 16
 | |
| 	)
 | |
| 
 | |
| 	// Protect against e.cur wraparound.
 | |
| 	for e.cur >= e.bufferReset-int32(len(e.hist)) {
 | |
| 		if len(e.hist) == 0 {
 | |
| 			e.table = [dFastShortTableSize]tableEntry{}
 | |
| 			e.longTable = [dFastLongTableSize]tableEntry{}
 | |
| 			e.cur = e.maxMatchOff
 | |
| 			break
 | |
| 		}
 | |
| 		// Shift down everything in the table that isn't already too far away.
 | |
| 		minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
 | |
| 		for i := range e.table[:] {
 | |
| 			v := e.table[i].offset
 | |
| 			if v < minOff {
 | |
| 				v = 0
 | |
| 			} else {
 | |
| 				v = v - e.cur + e.maxMatchOff
 | |
| 			}
 | |
| 			e.table[i].offset = v
 | |
| 		}
 | |
| 		for i := range e.longTable[:] {
 | |
| 			v := e.longTable[i].offset
 | |
| 			if v < minOff {
 | |
| 				v = 0
 | |
| 			} else {
 | |
| 				v = v - e.cur + e.maxMatchOff
 | |
| 			}
 | |
| 			e.longTable[i].offset = v
 | |
| 		}
 | |
| 		e.cur = e.maxMatchOff
 | |
| 		break
 | |
| 	}
 | |
| 
 | |
| 	s := e.addBlock(src)
 | |
| 	blk.size = len(src)
 | |
| 	if len(src) < minNonLiteralBlockSize {
 | |
| 		blk.extraLits = len(src)
 | |
| 		blk.literals = blk.literals[:len(src)]
 | |
| 		copy(blk.literals, src)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Override src
 | |
| 	src = e.hist
 | |
| 	sLimit := int32(len(src)) - inputMargin
 | |
| 	// stepSize is the number of bytes to skip on every main loop iteration.
 | |
| 	// It should be >= 1.
 | |
| 	const stepSize = 1
 | |
| 
 | |
| 	const kSearchStrength = 8
 | |
| 
 | |
| 	// nextEmit is where in src the next emitLiteral should start from.
 | |
| 	nextEmit := s
 | |
| 	cv := load6432(src, s)
 | |
| 
 | |
| 	// Relative offsets
 | |
| 	offset1 := int32(blk.recentOffsets[0])
 | |
| 	offset2 := int32(blk.recentOffsets[1])
 | |
| 
 | |
| 	addLiterals := func(s *seq, until int32) {
 | |
| 		if until == nextEmit {
 | |
| 			return
 | |
| 		}
 | |
| 		blk.literals = append(blk.literals, src[nextEmit:until]...)
 | |
| 		s.litLen = uint32(until - nextEmit)
 | |
| 	}
 | |
| 	if debugEncoder {
 | |
| 		println("recent offsets:", blk.recentOffsets)
 | |
| 	}
 | |
| 
 | |
| encodeLoop:
 | |
| 	for {
 | |
| 		var t int32
 | |
| 		// We allow the encoder to optionally turn off repeat offsets across blocks
 | |
| 		canRepeat := len(blk.sequences) > 2
 | |
| 
 | |
| 		for {
 | |
| 			if debugAsserts && canRepeat && offset1 == 0 {
 | |
| 				panic("offset0 was 0")
 | |
| 			}
 | |
| 
 | |
| 			nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 			nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
 | |
| 			candidateL := e.longTable[nextHashL]
 | |
| 			candidateS := e.table[nextHashS]
 | |
| 
 | |
| 			const repOff = 1
 | |
| 			repIndex := s - offset1 + repOff
 | |
| 			entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
 | |
| 			e.longTable[nextHashL] = entry
 | |
| 			e.table[nextHashS] = entry
 | |
| 
 | |
| 			if canRepeat {
 | |
| 				if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
 | |
| 					// Consider history as well.
 | |
| 					var seq seq
 | |
| 					length := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
 | |
| 
 | |
| 					seq.matchLen = uint32(length - zstdMinMatch)
 | |
| 
 | |
| 					// We might be able to match backwards.
 | |
| 					// Extend as long as we can.
 | |
| 					start := s + repOff
 | |
| 					// We end the search early, so we don't risk 0 literals
 | |
| 					// and have to do special offset treatment.
 | |
| 					startLimit := nextEmit + 1
 | |
| 
 | |
| 					tMin := s - e.maxMatchOff
 | |
| 					if tMin < 0 {
 | |
| 						tMin = 0
 | |
| 					}
 | |
| 					for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 {
 | |
| 						repIndex--
 | |
| 						start--
 | |
| 						seq.matchLen++
 | |
| 					}
 | |
| 					addLiterals(&seq, start)
 | |
| 
 | |
| 					// rep 0
 | |
| 					seq.offset = 1
 | |
| 					if debugSequences {
 | |
| 						println("repeat sequence", seq, "next s:", s)
 | |
| 					}
 | |
| 					blk.sequences = append(blk.sequences, seq)
 | |
| 					s += length + repOff
 | |
| 					nextEmit = s
 | |
| 					if s >= sLimit {
 | |
| 						if debugEncoder {
 | |
| 							println("repeat ended", s, length)
 | |
| 
 | |
| 						}
 | |
| 						break encodeLoop
 | |
| 					}
 | |
| 					cv = load6432(src, s)
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 			// Find the offsets of our two matches.
 | |
| 			coffsetL := s - (candidateL.offset - e.cur)
 | |
| 			coffsetS := s - (candidateS.offset - e.cur)
 | |
| 
 | |
| 			// Check if we have a long match.
 | |
| 			if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
 | |
| 				// Found a long match, likely at least 8 bytes.
 | |
| 				// Reference encoder checks all 8 bytes, we only check 4,
 | |
| 				// but the likelihood of both the first 4 bytes and the hash matching should be enough.
 | |
| 				t = candidateL.offset - e.cur
 | |
| 				if debugAsserts && s <= t {
 | |
| 					panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 				}
 | |
| 				if debugAsserts && s-t > e.maxMatchOff {
 | |
| 					panic("s - t >e.maxMatchOff")
 | |
| 				}
 | |
| 				if debugMatches {
 | |
| 					println("long match")
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// Check if we have a short match.
 | |
| 			if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
 | |
| 				// found a regular match
 | |
| 				// See if we can find a long match at s+1
 | |
| 				const checkAt = 1
 | |
| 				cv := load6432(src, s+checkAt)
 | |
| 				nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 				candidateL = e.longTable[nextHashL]
 | |
| 				coffsetL = s - (candidateL.offset - e.cur) + checkAt
 | |
| 
 | |
| 				// We can store it, since we have at least a 4 byte match.
 | |
| 				e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
 | |
| 				if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
 | |
| 					// Found a long match, likely at least 8 bytes.
 | |
| 					// Reference encoder checks all 8 bytes, we only check 4,
 | |
| 					// but the likelihood of both the first 4 bytes and the hash matching should be enough.
 | |
| 					t = candidateL.offset - e.cur
 | |
| 					s += checkAt
 | |
| 					if debugMatches {
 | |
| 						println("long match (after short)")
 | |
| 					}
 | |
| 					break
 | |
| 				}
 | |
| 
 | |
| 				t = candidateS.offset - e.cur
 | |
| 				if debugAsserts && s <= t {
 | |
| 					panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 				}
 | |
| 				if debugAsserts && s-t > e.maxMatchOff {
 | |
| 					panic("s - t >e.maxMatchOff")
 | |
| 				}
 | |
| 				if debugAsserts && t < 0 {
 | |
| 					panic("t<0")
 | |
| 				}
 | |
| 				if debugMatches {
 | |
| 					println("short match")
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// No match found, move forward in input.
 | |
| 			s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
 | |
| 			if s >= sLimit {
 | |
| 				break encodeLoop
 | |
| 			}
 | |
| 			cv = load6432(src, s)
 | |
| 		}
 | |
| 
 | |
| 		// A 4-byte match has been found. Update recent offsets.
 | |
| 		// We'll later see if more than 4 bytes.
 | |
| 		offset2 = offset1
 | |
| 		offset1 = s - t
 | |
| 
 | |
| 		if debugAsserts && s <= t {
 | |
| 			panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 		}
 | |
| 
 | |
| 		if debugAsserts && canRepeat && int(offset1) > len(src) {
 | |
| 			panic("invalid offset")
 | |
| 		}
 | |
| 
 | |
| 		// Extend the 4-byte match as long as possible.
 | |
| 		l := e.matchlen(s+4, t+4, src) + 4
 | |
| 
 | |
| 		// Extend backwards
 | |
| 		tMin := s - e.maxMatchOff
 | |
| 		if tMin < 0 {
 | |
| 			tMin = 0
 | |
| 		}
 | |
| 		for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
 | |
| 			s--
 | |
| 			t--
 | |
| 			l++
 | |
| 		}
 | |
| 
 | |
| 		// Write our sequence
 | |
| 		var seq seq
 | |
| 		seq.litLen = uint32(s - nextEmit)
 | |
| 		seq.matchLen = uint32(l - zstdMinMatch)
 | |
| 		if seq.litLen > 0 {
 | |
| 			blk.literals = append(blk.literals, src[nextEmit:s]...)
 | |
| 		}
 | |
| 		seq.offset = uint32(s-t) + 3
 | |
| 		s += l
 | |
| 		if debugSequences {
 | |
| 			println("sequence", seq, "next s:", s)
 | |
| 		}
 | |
| 		blk.sequences = append(blk.sequences, seq)
 | |
| 		nextEmit = s
 | |
| 		if s >= sLimit {
 | |
| 			break encodeLoop
 | |
| 		}
 | |
| 
 | |
| 		// Index match start+1 (long) and start+2 (short)
 | |
| 		index0 := s - l + 1
 | |
| 		// Index match end-2 (long) and end-1 (short)
 | |
| 		index1 := s - 2
 | |
| 
 | |
| 		cv0 := load6432(src, index0)
 | |
| 		cv1 := load6432(src, index1)
 | |
| 		te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
 | |
| 		te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
 | |
| 		e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0
 | |
| 		e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1
 | |
| 		cv0 >>= 8
 | |
| 		cv1 >>= 8
 | |
| 		te0.offset++
 | |
| 		te1.offset++
 | |
| 		te0.val = uint32(cv0)
 | |
| 		te1.val = uint32(cv1)
 | |
| 		e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0
 | |
| 		e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1
 | |
| 
 | |
| 		cv = load6432(src, s)
 | |
| 
 | |
| 		if !canRepeat {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// Check offset 2
 | |
| 		for {
 | |
| 			o2 := s - offset2
 | |
| 			if load3232(src, o2) != uint32(cv) {
 | |
| 				// Do regular search
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// Store this, since we have it.
 | |
| 			nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
 | |
| 			nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 
 | |
| 			// We have at least 4 byte match.
 | |
| 			// No need to check backwards. We come straight from a match
 | |
| 			l := 4 + e.matchlen(s+4, o2+4, src)
 | |
| 
 | |
| 			entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
 | |
| 			e.longTable[nextHashL] = entry
 | |
| 			e.table[nextHashS] = entry
 | |
| 			seq.matchLen = uint32(l) - zstdMinMatch
 | |
| 			seq.litLen = 0
 | |
| 
 | |
| 			// Since litlen is always 0, this is offset 1.
 | |
| 			seq.offset = 1
 | |
| 			s += l
 | |
| 			nextEmit = s
 | |
| 			if debugSequences {
 | |
| 				println("sequence", seq, "next s:", s)
 | |
| 			}
 | |
| 			blk.sequences = append(blk.sequences, seq)
 | |
| 
 | |
| 			// Swap offset 1 and 2.
 | |
| 			offset1, offset2 = offset2, offset1
 | |
| 			if s >= sLimit {
 | |
| 				// Finished
 | |
| 				break encodeLoop
 | |
| 			}
 | |
| 			cv = load6432(src, s)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if int(nextEmit) < len(src) {
 | |
| 		blk.literals = append(blk.literals, src[nextEmit:]...)
 | |
| 		blk.extraLits = len(src) - int(nextEmit)
 | |
| 	}
 | |
| 	blk.recentOffsets[0] = uint32(offset1)
 | |
| 	blk.recentOffsets[1] = uint32(offset2)
 | |
| 	if debugEncoder {
 | |
| 		println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // EncodeNoHist will encode a block with no history and no following blocks.
 | |
| // Most notable difference is that src will not be copied for history and
 | |
| // we do not need to check for max match length.
 | |
| func (e *doubleFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) {
 | |
| 	const (
 | |
| 		// Input margin is the number of bytes we read (8)
 | |
| 		// and the maximum we will read ahead (2)
 | |
| 		inputMargin            = 8 + 2
 | |
| 		minNonLiteralBlockSize = 16
 | |
| 	)
 | |
| 
 | |
| 	// Protect against e.cur wraparound.
 | |
| 	if e.cur >= e.bufferReset {
 | |
| 		for i := range e.table[:] {
 | |
| 			e.table[i] = tableEntry{}
 | |
| 		}
 | |
| 		for i := range e.longTable[:] {
 | |
| 			e.longTable[i] = tableEntry{}
 | |
| 		}
 | |
| 		e.cur = e.maxMatchOff
 | |
| 	}
 | |
| 
 | |
| 	s := int32(0)
 | |
| 	blk.size = len(src)
 | |
| 	if len(src) < minNonLiteralBlockSize {
 | |
| 		blk.extraLits = len(src)
 | |
| 		blk.literals = blk.literals[:len(src)]
 | |
| 		copy(blk.literals, src)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Override src
 | |
| 	sLimit := int32(len(src)) - inputMargin
 | |
| 	// stepSize is the number of bytes to skip on every main loop iteration.
 | |
| 	// It should be >= 1.
 | |
| 	const stepSize = 1
 | |
| 
 | |
| 	const kSearchStrength = 8
 | |
| 
 | |
| 	// nextEmit is where in src the next emitLiteral should start from.
 | |
| 	nextEmit := s
 | |
| 	cv := load6432(src, s)
 | |
| 
 | |
| 	// Relative offsets
 | |
| 	offset1 := int32(blk.recentOffsets[0])
 | |
| 	offset2 := int32(blk.recentOffsets[1])
 | |
| 
 | |
| 	addLiterals := func(s *seq, until int32) {
 | |
| 		if until == nextEmit {
 | |
| 			return
 | |
| 		}
 | |
| 		blk.literals = append(blk.literals, src[nextEmit:until]...)
 | |
| 		s.litLen = uint32(until - nextEmit)
 | |
| 	}
 | |
| 	if debugEncoder {
 | |
| 		println("recent offsets:", blk.recentOffsets)
 | |
| 	}
 | |
| 
 | |
| encodeLoop:
 | |
| 	for {
 | |
| 		var t int32
 | |
| 		for {
 | |
| 
 | |
| 			nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 			nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
 | |
| 			candidateL := e.longTable[nextHashL]
 | |
| 			candidateS := e.table[nextHashS]
 | |
| 
 | |
| 			const repOff = 1
 | |
| 			repIndex := s - offset1 + repOff
 | |
| 			entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
 | |
| 			e.longTable[nextHashL] = entry
 | |
| 			e.table[nextHashS] = entry
 | |
| 
 | |
| 			if len(blk.sequences) > 2 {
 | |
| 				if load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
 | |
| 					// Consider history as well.
 | |
| 					var seq seq
 | |
| 					//length := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
 | |
| 					length := 4 + int32(matchLen(src[s+4+repOff:], src[repIndex+4:]))
 | |
| 
 | |
| 					seq.matchLen = uint32(length - zstdMinMatch)
 | |
| 
 | |
| 					// We might be able to match backwards.
 | |
| 					// Extend as long as we can.
 | |
| 					start := s + repOff
 | |
| 					// We end the search early, so we don't risk 0 literals
 | |
| 					// and have to do special offset treatment.
 | |
| 					startLimit := nextEmit + 1
 | |
| 
 | |
| 					tMin := s - e.maxMatchOff
 | |
| 					if tMin < 0 {
 | |
| 						tMin = 0
 | |
| 					}
 | |
| 					for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] {
 | |
| 						repIndex--
 | |
| 						start--
 | |
| 						seq.matchLen++
 | |
| 					}
 | |
| 					addLiterals(&seq, start)
 | |
| 
 | |
| 					// rep 0
 | |
| 					seq.offset = 1
 | |
| 					if debugSequences {
 | |
| 						println("repeat sequence", seq, "next s:", s)
 | |
| 					}
 | |
| 					blk.sequences = append(blk.sequences, seq)
 | |
| 					s += length + repOff
 | |
| 					nextEmit = s
 | |
| 					if s >= sLimit {
 | |
| 						if debugEncoder {
 | |
| 							println("repeat ended", s, length)
 | |
| 
 | |
| 						}
 | |
| 						break encodeLoop
 | |
| 					}
 | |
| 					cv = load6432(src, s)
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 			// Find the offsets of our two matches.
 | |
| 			coffsetL := s - (candidateL.offset - e.cur)
 | |
| 			coffsetS := s - (candidateS.offset - e.cur)
 | |
| 
 | |
| 			// Check if we have a long match.
 | |
| 			if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
 | |
| 				// Found a long match, likely at least 8 bytes.
 | |
| 				// Reference encoder checks all 8 bytes, we only check 4,
 | |
| 				// but the likelihood of both the first 4 bytes and the hash matching should be enough.
 | |
| 				t = candidateL.offset - e.cur
 | |
| 				if debugAsserts && s <= t {
 | |
| 					panic(fmt.Sprintf("s (%d) <= t (%d). cur: %d", s, t, e.cur))
 | |
| 				}
 | |
| 				if debugAsserts && s-t > e.maxMatchOff {
 | |
| 					panic("s - t >e.maxMatchOff")
 | |
| 				}
 | |
| 				if debugMatches {
 | |
| 					println("long match")
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// Check if we have a short match.
 | |
| 			if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
 | |
| 				// found a regular match
 | |
| 				// See if we can find a long match at s+1
 | |
| 				const checkAt = 1
 | |
| 				cv := load6432(src, s+checkAt)
 | |
| 				nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 				candidateL = e.longTable[nextHashL]
 | |
| 				coffsetL = s - (candidateL.offset - e.cur) + checkAt
 | |
| 
 | |
| 				// We can store it, since we have at least a 4 byte match.
 | |
| 				e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
 | |
| 				if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
 | |
| 					// Found a long match, likely at least 8 bytes.
 | |
| 					// Reference encoder checks all 8 bytes, we only check 4,
 | |
| 					// but the likelihood of both the first 4 bytes and the hash matching should be enough.
 | |
| 					t = candidateL.offset - e.cur
 | |
| 					s += checkAt
 | |
| 					if debugMatches {
 | |
| 						println("long match (after short)")
 | |
| 					}
 | |
| 					break
 | |
| 				}
 | |
| 
 | |
| 				t = candidateS.offset - e.cur
 | |
| 				if debugAsserts && s <= t {
 | |
| 					panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 				}
 | |
| 				if debugAsserts && s-t > e.maxMatchOff {
 | |
| 					panic("s - t >e.maxMatchOff")
 | |
| 				}
 | |
| 				if debugAsserts && t < 0 {
 | |
| 					panic("t<0")
 | |
| 				}
 | |
| 				if debugMatches {
 | |
| 					println("short match")
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// No match found, move forward in input.
 | |
| 			s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
 | |
| 			if s >= sLimit {
 | |
| 				break encodeLoop
 | |
| 			}
 | |
| 			cv = load6432(src, s)
 | |
| 		}
 | |
| 
 | |
| 		// A 4-byte match has been found. Update recent offsets.
 | |
| 		// We'll later see if more than 4 bytes.
 | |
| 		offset2 = offset1
 | |
| 		offset1 = s - t
 | |
| 
 | |
| 		if debugAsserts && s <= t {
 | |
| 			panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 		}
 | |
| 
 | |
| 		// Extend the 4-byte match as long as possible.
 | |
| 		//l := e.matchlen(s+4, t+4, src) + 4
 | |
| 		l := int32(matchLen(src[s+4:], src[t+4:])) + 4
 | |
| 
 | |
| 		// Extend backwards
 | |
| 		tMin := s - e.maxMatchOff
 | |
| 		if tMin < 0 {
 | |
| 			tMin = 0
 | |
| 		}
 | |
| 		for t > tMin && s > nextEmit && src[t-1] == src[s-1] {
 | |
| 			s--
 | |
| 			t--
 | |
| 			l++
 | |
| 		}
 | |
| 
 | |
| 		// Write our sequence
 | |
| 		var seq seq
 | |
| 		seq.litLen = uint32(s - nextEmit)
 | |
| 		seq.matchLen = uint32(l - zstdMinMatch)
 | |
| 		if seq.litLen > 0 {
 | |
| 			blk.literals = append(blk.literals, src[nextEmit:s]...)
 | |
| 		}
 | |
| 		seq.offset = uint32(s-t) + 3
 | |
| 		s += l
 | |
| 		if debugSequences {
 | |
| 			println("sequence", seq, "next s:", s)
 | |
| 		}
 | |
| 		blk.sequences = append(blk.sequences, seq)
 | |
| 		nextEmit = s
 | |
| 		if s >= sLimit {
 | |
| 			break encodeLoop
 | |
| 		}
 | |
| 
 | |
| 		// Index match start+1 (long) and start+2 (short)
 | |
| 		index0 := s - l + 1
 | |
| 		// Index match end-2 (long) and end-1 (short)
 | |
| 		index1 := s - 2
 | |
| 
 | |
| 		cv0 := load6432(src, index0)
 | |
| 		cv1 := load6432(src, index1)
 | |
| 		te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
 | |
| 		te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
 | |
| 		e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0
 | |
| 		e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1
 | |
| 		cv0 >>= 8
 | |
| 		cv1 >>= 8
 | |
| 		te0.offset++
 | |
| 		te1.offset++
 | |
| 		te0.val = uint32(cv0)
 | |
| 		te1.val = uint32(cv1)
 | |
| 		e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0
 | |
| 		e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1
 | |
| 
 | |
| 		cv = load6432(src, s)
 | |
| 
 | |
| 		if len(blk.sequences) <= 2 {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// Check offset 2
 | |
| 		for {
 | |
| 			o2 := s - offset2
 | |
| 			if load3232(src, o2) != uint32(cv) {
 | |
| 				// Do regular search
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// Store this, since we have it.
 | |
| 			nextHashS := hashLen(cv1>>8, dFastShortTableBits, dFastShortLen)
 | |
| 			nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 
 | |
| 			// We have at least 4 byte match.
 | |
| 			// No need to check backwards. We come straight from a match
 | |
| 			//l := 4 + e.matchlen(s+4, o2+4, src)
 | |
| 			l := 4 + int32(matchLen(src[s+4:], src[o2+4:]))
 | |
| 
 | |
| 			entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
 | |
| 			e.longTable[nextHashL] = entry
 | |
| 			e.table[nextHashS] = entry
 | |
| 			seq.matchLen = uint32(l) - zstdMinMatch
 | |
| 			seq.litLen = 0
 | |
| 
 | |
| 			// Since litlen is always 0, this is offset 1.
 | |
| 			seq.offset = 1
 | |
| 			s += l
 | |
| 			nextEmit = s
 | |
| 			if debugSequences {
 | |
| 				println("sequence", seq, "next s:", s)
 | |
| 			}
 | |
| 			blk.sequences = append(blk.sequences, seq)
 | |
| 
 | |
| 			// Swap offset 1 and 2.
 | |
| 			offset1, offset2 = offset2, offset1
 | |
| 			if s >= sLimit {
 | |
| 				// Finished
 | |
| 				break encodeLoop
 | |
| 			}
 | |
| 			cv = load6432(src, s)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if int(nextEmit) < len(src) {
 | |
| 		blk.literals = append(blk.literals, src[nextEmit:]...)
 | |
| 		blk.extraLits = len(src) - int(nextEmit)
 | |
| 	}
 | |
| 	if debugEncoder {
 | |
| 		println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
 | |
| 	}
 | |
| 
 | |
| 	// We do not store history, so we must offset e.cur to avoid false matches for next user.
 | |
| 	if e.cur < e.bufferReset {
 | |
| 		e.cur += int32(len(src))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Encode will encode the content, with a dictionary if initialized for it.
 | |
| func (e *doubleFastEncoderDict) Encode(blk *blockEnc, src []byte) {
 | |
| 	const (
 | |
| 		// Input margin is the number of bytes we read (8)
 | |
| 		// and the maximum we will read ahead (2)
 | |
| 		inputMargin            = 8 + 2
 | |
| 		minNonLiteralBlockSize = 16
 | |
| 	)
 | |
| 
 | |
| 	// Protect against e.cur wraparound.
 | |
| 	for e.cur >= e.bufferReset-int32(len(e.hist)) {
 | |
| 		if len(e.hist) == 0 {
 | |
| 			for i := range e.table[:] {
 | |
| 				e.table[i] = tableEntry{}
 | |
| 			}
 | |
| 			for i := range e.longTable[:] {
 | |
| 				e.longTable[i] = tableEntry{}
 | |
| 			}
 | |
| 			e.markAllShardsDirty()
 | |
| 			e.cur = e.maxMatchOff
 | |
| 			break
 | |
| 		}
 | |
| 		// Shift down everything in the table that isn't already too far away.
 | |
| 		minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
 | |
| 		for i := range e.table[:] {
 | |
| 			v := e.table[i].offset
 | |
| 			if v < minOff {
 | |
| 				v = 0
 | |
| 			} else {
 | |
| 				v = v - e.cur + e.maxMatchOff
 | |
| 			}
 | |
| 			e.table[i].offset = v
 | |
| 		}
 | |
| 		for i := range e.longTable[:] {
 | |
| 			v := e.longTable[i].offset
 | |
| 			if v < minOff {
 | |
| 				v = 0
 | |
| 			} else {
 | |
| 				v = v - e.cur + e.maxMatchOff
 | |
| 			}
 | |
| 			e.longTable[i].offset = v
 | |
| 		}
 | |
| 		e.markAllShardsDirty()
 | |
| 		e.cur = e.maxMatchOff
 | |
| 		break
 | |
| 	}
 | |
| 
 | |
| 	s := e.addBlock(src)
 | |
| 	blk.size = len(src)
 | |
| 	if len(src) < minNonLiteralBlockSize {
 | |
| 		blk.extraLits = len(src)
 | |
| 		blk.literals = blk.literals[:len(src)]
 | |
| 		copy(blk.literals, src)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Override src
 | |
| 	src = e.hist
 | |
| 	sLimit := int32(len(src)) - inputMargin
 | |
| 	// stepSize is the number of bytes to skip on every main loop iteration.
 | |
| 	// It should be >= 1.
 | |
| 	const stepSize = 1
 | |
| 
 | |
| 	const kSearchStrength = 8
 | |
| 
 | |
| 	// nextEmit is where in src the next emitLiteral should start from.
 | |
| 	nextEmit := s
 | |
| 	cv := load6432(src, s)
 | |
| 
 | |
| 	// Relative offsets
 | |
| 	offset1 := int32(blk.recentOffsets[0])
 | |
| 	offset2 := int32(blk.recentOffsets[1])
 | |
| 
 | |
| 	addLiterals := func(s *seq, until int32) {
 | |
| 		if until == nextEmit {
 | |
| 			return
 | |
| 		}
 | |
| 		blk.literals = append(blk.literals, src[nextEmit:until]...)
 | |
| 		s.litLen = uint32(until - nextEmit)
 | |
| 	}
 | |
| 	if debugEncoder {
 | |
| 		println("recent offsets:", blk.recentOffsets)
 | |
| 	}
 | |
| 
 | |
| encodeLoop:
 | |
| 	for {
 | |
| 		var t int32
 | |
| 		// We allow the encoder to optionally turn off repeat offsets across blocks
 | |
| 		canRepeat := len(blk.sequences) > 2
 | |
| 
 | |
| 		for {
 | |
| 			if debugAsserts && canRepeat && offset1 == 0 {
 | |
| 				panic("offset0 was 0")
 | |
| 			}
 | |
| 
 | |
| 			nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 			nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
 | |
| 			candidateL := e.longTable[nextHashL]
 | |
| 			candidateS := e.table[nextHashS]
 | |
| 
 | |
| 			const repOff = 1
 | |
| 			repIndex := s - offset1 + repOff
 | |
| 			entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
 | |
| 			e.longTable[nextHashL] = entry
 | |
| 			e.markLongShardDirty(nextHashL)
 | |
| 			e.table[nextHashS] = entry
 | |
| 			e.markShardDirty(nextHashS)
 | |
| 
 | |
| 			if canRepeat {
 | |
| 				if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
 | |
| 					// Consider history as well.
 | |
| 					var seq seq
 | |
| 					length := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
 | |
| 
 | |
| 					seq.matchLen = uint32(length - zstdMinMatch)
 | |
| 
 | |
| 					// We might be able to match backwards.
 | |
| 					// Extend as long as we can.
 | |
| 					start := s + repOff
 | |
| 					// We end the search early, so we don't risk 0 literals
 | |
| 					// and have to do special offset treatment.
 | |
| 					startLimit := nextEmit + 1
 | |
| 
 | |
| 					tMin := s - e.maxMatchOff
 | |
| 					if tMin < 0 {
 | |
| 						tMin = 0
 | |
| 					}
 | |
| 					for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 {
 | |
| 						repIndex--
 | |
| 						start--
 | |
| 						seq.matchLen++
 | |
| 					}
 | |
| 					addLiterals(&seq, start)
 | |
| 
 | |
| 					// rep 0
 | |
| 					seq.offset = 1
 | |
| 					if debugSequences {
 | |
| 						println("repeat sequence", seq, "next s:", s)
 | |
| 					}
 | |
| 					blk.sequences = append(blk.sequences, seq)
 | |
| 					s += length + repOff
 | |
| 					nextEmit = s
 | |
| 					if s >= sLimit {
 | |
| 						if debugEncoder {
 | |
| 							println("repeat ended", s, length)
 | |
| 
 | |
| 						}
 | |
| 						break encodeLoop
 | |
| 					}
 | |
| 					cv = load6432(src, s)
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 			// Find the offsets of our two matches.
 | |
| 			coffsetL := s - (candidateL.offset - e.cur)
 | |
| 			coffsetS := s - (candidateS.offset - e.cur)
 | |
| 
 | |
| 			// Check if we have a long match.
 | |
| 			if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
 | |
| 				// Found a long match, likely at least 8 bytes.
 | |
| 				// Reference encoder checks all 8 bytes, we only check 4,
 | |
| 				// but the likelihood of both the first 4 bytes and the hash matching should be enough.
 | |
| 				t = candidateL.offset - e.cur
 | |
| 				if debugAsserts && s <= t {
 | |
| 					panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 				}
 | |
| 				if debugAsserts && s-t > e.maxMatchOff {
 | |
| 					panic("s - t >e.maxMatchOff")
 | |
| 				}
 | |
| 				if debugMatches {
 | |
| 					println("long match")
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// Check if we have a short match.
 | |
| 			if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
 | |
| 				// found a regular match
 | |
| 				// See if we can find a long match at s+1
 | |
| 				const checkAt = 1
 | |
| 				cv := load6432(src, s+checkAt)
 | |
| 				nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 				candidateL = e.longTable[nextHashL]
 | |
| 				coffsetL = s - (candidateL.offset - e.cur) + checkAt
 | |
| 
 | |
| 				// We can store it, since we have at least a 4 byte match.
 | |
| 				e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
 | |
| 				e.markLongShardDirty(nextHashL)
 | |
| 				if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
 | |
| 					// Found a long match, likely at least 8 bytes.
 | |
| 					// Reference encoder checks all 8 bytes, we only check 4,
 | |
| 					// but the likelihood of both the first 4 bytes and the hash matching should be enough.
 | |
| 					t = candidateL.offset - e.cur
 | |
| 					s += checkAt
 | |
| 					if debugMatches {
 | |
| 						println("long match (after short)")
 | |
| 					}
 | |
| 					break
 | |
| 				}
 | |
| 
 | |
| 				t = candidateS.offset - e.cur
 | |
| 				if debugAsserts && s <= t {
 | |
| 					panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 				}
 | |
| 				if debugAsserts && s-t > e.maxMatchOff {
 | |
| 					panic("s - t >e.maxMatchOff")
 | |
| 				}
 | |
| 				if debugAsserts && t < 0 {
 | |
| 					panic("t<0")
 | |
| 				}
 | |
| 				if debugMatches {
 | |
| 					println("short match")
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// No match found, move forward in input.
 | |
| 			s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
 | |
| 			if s >= sLimit {
 | |
| 				break encodeLoop
 | |
| 			}
 | |
| 			cv = load6432(src, s)
 | |
| 		}
 | |
| 
 | |
| 		// A 4-byte match has been found. Update recent offsets.
 | |
| 		// We'll later see if more than 4 bytes.
 | |
| 		offset2 = offset1
 | |
| 		offset1 = s - t
 | |
| 
 | |
| 		if debugAsserts && s <= t {
 | |
| 			panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
 | |
| 		}
 | |
| 
 | |
| 		if debugAsserts && canRepeat && int(offset1) > len(src) {
 | |
| 			panic("invalid offset")
 | |
| 		}
 | |
| 
 | |
| 		// Extend the 4-byte match as long as possible.
 | |
| 		l := e.matchlen(s+4, t+4, src) + 4
 | |
| 
 | |
| 		// Extend backwards
 | |
| 		tMin := s - e.maxMatchOff
 | |
| 		if tMin < 0 {
 | |
| 			tMin = 0
 | |
| 		}
 | |
| 		for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
 | |
| 			s--
 | |
| 			t--
 | |
| 			l++
 | |
| 		}
 | |
| 
 | |
| 		// Write our sequence
 | |
| 		var seq seq
 | |
| 		seq.litLen = uint32(s - nextEmit)
 | |
| 		seq.matchLen = uint32(l - zstdMinMatch)
 | |
| 		if seq.litLen > 0 {
 | |
| 			blk.literals = append(blk.literals, src[nextEmit:s]...)
 | |
| 		}
 | |
| 		seq.offset = uint32(s-t) + 3
 | |
| 		s += l
 | |
| 		if debugSequences {
 | |
| 			println("sequence", seq, "next s:", s)
 | |
| 		}
 | |
| 		blk.sequences = append(blk.sequences, seq)
 | |
| 		nextEmit = s
 | |
| 		if s >= sLimit {
 | |
| 			break encodeLoop
 | |
| 		}
 | |
| 
 | |
| 		// Index match start+1 (long) and start+2 (short)
 | |
| 		index0 := s - l + 1
 | |
| 		// Index match end-2 (long) and end-1 (short)
 | |
| 		index1 := s - 2
 | |
| 
 | |
| 		cv0 := load6432(src, index0)
 | |
| 		cv1 := load6432(src, index1)
 | |
| 		te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
 | |
| 		te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
 | |
| 		longHash1 := hashLen(cv0, dFastLongTableBits, dFastLongLen)
 | |
| 		longHash2 := hashLen(cv1, dFastLongTableBits, dFastLongLen)
 | |
| 		e.longTable[longHash1] = te0
 | |
| 		e.longTable[longHash2] = te1
 | |
| 		e.markLongShardDirty(longHash1)
 | |
| 		e.markLongShardDirty(longHash2)
 | |
| 		cv0 >>= 8
 | |
| 		cv1 >>= 8
 | |
| 		te0.offset++
 | |
| 		te1.offset++
 | |
| 		te0.val = uint32(cv0)
 | |
| 		te1.val = uint32(cv1)
 | |
| 		hashVal1 := hashLen(cv0, dFastShortTableBits, dFastShortLen)
 | |
| 		hashVal2 := hashLen(cv1, dFastShortTableBits, dFastShortLen)
 | |
| 		e.table[hashVal1] = te0
 | |
| 		e.markShardDirty(hashVal1)
 | |
| 		e.table[hashVal2] = te1
 | |
| 		e.markShardDirty(hashVal2)
 | |
| 
 | |
| 		cv = load6432(src, s)
 | |
| 
 | |
| 		if !canRepeat {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// Check offset 2
 | |
| 		for {
 | |
| 			o2 := s - offset2
 | |
| 			if load3232(src, o2) != uint32(cv) {
 | |
| 				// Do regular search
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			// Store this, since we have it.
 | |
| 			nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
 | |
| 			nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
 | |
| 
 | |
| 			// We have at least 4 byte match.
 | |
| 			// No need to check backwards. We come straight from a match
 | |
| 			l := 4 + e.matchlen(s+4, o2+4, src)
 | |
| 
 | |
| 			entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
 | |
| 			e.longTable[nextHashL] = entry
 | |
| 			e.markLongShardDirty(nextHashL)
 | |
| 			e.table[nextHashS] = entry
 | |
| 			e.markShardDirty(nextHashS)
 | |
| 			seq.matchLen = uint32(l) - zstdMinMatch
 | |
| 			seq.litLen = 0
 | |
| 
 | |
| 			// Since litlen is always 0, this is offset 1.
 | |
| 			seq.offset = 1
 | |
| 			s += l
 | |
| 			nextEmit = s
 | |
| 			if debugSequences {
 | |
| 				println("sequence", seq, "next s:", s)
 | |
| 			}
 | |
| 			blk.sequences = append(blk.sequences, seq)
 | |
| 
 | |
| 			// Swap offset 1 and 2.
 | |
| 			offset1, offset2 = offset2, offset1
 | |
| 			if s >= sLimit {
 | |
| 				// Finished
 | |
| 				break encodeLoop
 | |
| 			}
 | |
| 			cv = load6432(src, s)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if int(nextEmit) < len(src) {
 | |
| 		blk.literals = append(blk.literals, src[nextEmit:]...)
 | |
| 		blk.extraLits = len(src) - int(nextEmit)
 | |
| 	}
 | |
| 	blk.recentOffsets[0] = uint32(offset1)
 | |
| 	blk.recentOffsets[1] = uint32(offset2)
 | |
| 	if debugEncoder {
 | |
| 		println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
 | |
| 	}
 | |
| 	// If we encoded more than 64K mark all dirty.
 | |
| 	if len(src) > 64<<10 {
 | |
| 		e.markAllShardsDirty()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ResetDict will reset and set a dictionary if not nil
 | |
| func (e *doubleFastEncoder) Reset(d *dict, singleBlock bool) {
 | |
| 	e.fastEncoder.Reset(d, singleBlock)
 | |
| 	if d != nil {
 | |
| 		panic("doubleFastEncoder: Reset with dict not supported")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ResetDict will reset and set a dictionary if not nil
 | |
| func (e *doubleFastEncoderDict) Reset(d *dict, singleBlock bool) {
 | |
| 	allDirty := e.allDirty
 | |
| 	e.fastEncoderDict.Reset(d, singleBlock)
 | |
| 	if d == nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Init or copy dict table
 | |
| 	if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID {
 | |
| 		if len(e.dictLongTable) != len(e.longTable) {
 | |
| 			e.dictLongTable = make([]tableEntry, len(e.longTable))
 | |
| 		}
 | |
| 		if len(d.content) >= 8 {
 | |
| 			cv := load6432(d.content, 0)
 | |
| 			e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{
 | |
| 				val:    uint32(cv),
 | |
| 				offset: e.maxMatchOff,
 | |
| 			}
 | |
| 			end := int32(len(d.content)) - 8 + e.maxMatchOff
 | |
| 			for i := e.maxMatchOff + 1; i < end; i++ {
 | |
| 				cv = cv>>8 | (uint64(d.content[i-e.maxMatchOff+7]) << 56)
 | |
| 				e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{
 | |
| 					val:    uint32(cv),
 | |
| 					offset: i,
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		e.lastDictID = d.id
 | |
| 		allDirty = true
 | |
| 	}
 | |
| 	// Reset table to initial state
 | |
| 	e.cur = e.maxMatchOff
 | |
| 
 | |
| 	dirtyShardCnt := 0
 | |
| 	if !allDirty {
 | |
| 		for i := range e.longTableShardDirty {
 | |
| 			if e.longTableShardDirty[i] {
 | |
| 				dirtyShardCnt++
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if allDirty || dirtyShardCnt > dLongTableShardCnt/2 {
 | |
| 		//copy(e.longTable[:], e.dictLongTable)
 | |
| 		e.longTable = *(*[dFastLongTableSize]tableEntry)(e.dictLongTable)
 | |
| 		for i := range e.longTableShardDirty {
 | |
| 			e.longTableShardDirty[i] = false
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 	for i := range e.longTableShardDirty {
 | |
| 		if !e.longTableShardDirty[i] {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// copy(e.longTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize], e.dictLongTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize])
 | |
| 		*(*[dLongTableShardSize]tableEntry)(e.longTable[i*dLongTableShardSize:]) = *(*[dLongTableShardSize]tableEntry)(e.dictLongTable[i*dLongTableShardSize:])
 | |
| 
 | |
| 		e.longTableShardDirty[i] = false
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *doubleFastEncoderDict) markLongShardDirty(entryNum uint32) {
 | |
| 	e.longTableShardDirty[entryNum/dLongTableShardSize] = true
 | |
| }
 |