forked from toolshed/abra
		
	
		
			
				
	
	
		
			85 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Package goldilocks provides elliptic curve operations over the goldilocks curve.
 | 
						|
package goldilocks
 | 
						|
 | 
						|
import fp "github.com/cloudflare/circl/math/fp448"
 | 
						|
 | 
						|
// Curve is the Goldilocks curve x^2+y^2=z^2-39081x^2y^2.
 | 
						|
type Curve struct{}
 | 
						|
 | 
						|
// Identity returns the identity point.
 | 
						|
func (Curve) Identity() *Point {
 | 
						|
	return &Point{
 | 
						|
		y: fp.One(),
 | 
						|
		z: fp.One(),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// IsOnCurve returns true if the point lies on the curve.
 | 
						|
func (Curve) IsOnCurve(P *Point) bool {
 | 
						|
	x2, y2, t, t2, z2 := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
 | 
						|
	rhs, lhs := &fp.Elt{}, &fp.Elt{}
 | 
						|
	// Check z != 0
 | 
						|
	eq0 := !fp.IsZero(&P.z)
 | 
						|
 | 
						|
	fp.Mul(t, &P.ta, &P.tb)  // t = ta*tb
 | 
						|
	fp.Sqr(x2, &P.x)         // x^2
 | 
						|
	fp.Sqr(y2, &P.y)         // y^2
 | 
						|
	fp.Sqr(z2, &P.z)         // z^2
 | 
						|
	fp.Sqr(t2, t)            // t^2
 | 
						|
	fp.Add(lhs, x2, y2)      // x^2 + y^2
 | 
						|
	fp.Mul(rhs, t2, ¶mD) // dt^2
 | 
						|
	fp.Add(rhs, rhs, z2)     // z^2 + dt^2
 | 
						|
	fp.Sub(lhs, lhs, rhs)    // x^2 + y^2 - (z^2 + dt^2)
 | 
						|
	eq1 := fp.IsZero(lhs)
 | 
						|
 | 
						|
	fp.Mul(lhs, &P.x, &P.y) // xy
 | 
						|
	fp.Mul(rhs, t, &P.z)    // tz
 | 
						|
	fp.Sub(lhs, lhs, rhs)   // xy - tz
 | 
						|
	eq2 := fp.IsZero(lhs)
 | 
						|
 | 
						|
	return eq0 && eq1 && eq2
 | 
						|
}
 | 
						|
 | 
						|
// Generator returns the generator point.
 | 
						|
func (Curve) Generator() *Point {
 | 
						|
	return &Point{
 | 
						|
		x:  genX,
 | 
						|
		y:  genY,
 | 
						|
		z:  fp.One(),
 | 
						|
		ta: genX,
 | 
						|
		tb: genY,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Order returns the number of points in the prime subgroup.
 | 
						|
func (Curve) Order() Scalar { return order }
 | 
						|
 | 
						|
// Double returns 2P.
 | 
						|
func (Curve) Double(P *Point) *Point { R := *P; R.Double(); return &R }
 | 
						|
 | 
						|
// Add returns P+Q.
 | 
						|
func (Curve) Add(P, Q *Point) *Point { R := *P; R.Add(Q); return &R }
 | 
						|
 | 
						|
// ScalarMult returns kP. This function runs in constant time.
 | 
						|
func (e Curve) ScalarMult(k *Scalar, P *Point) *Point {
 | 
						|
	k4 := &Scalar{}
 | 
						|
	k4.divBy4(k)
 | 
						|
	return e.pull(twistCurve{}.ScalarMult(k4, e.push(P)))
 | 
						|
}
 | 
						|
 | 
						|
// ScalarBaseMult returns kG where G is the generator point. This function runs in constant time.
 | 
						|
func (e Curve) ScalarBaseMult(k *Scalar) *Point {
 | 
						|
	k4 := &Scalar{}
 | 
						|
	k4.divBy4(k)
 | 
						|
	return e.pull(twistCurve{}.ScalarBaseMult(k4))
 | 
						|
}
 | 
						|
 | 
						|
// CombinedMult returns mG+nP, where G is the generator point. This function is non-constant time.
 | 
						|
func (e Curve) CombinedMult(m, n *Scalar, P *Point) *Point {
 | 
						|
	m4 := &Scalar{}
 | 
						|
	n4 := &Scalar{}
 | 
						|
	m4.divBy4(m)
 | 
						|
	n4.divBy4(n)
 | 
						|
	return e.pull(twistCurve{}.CombinedMult(m4, n4, twistCurve{}.pull(P)))
 | 
						|
}
 |