forked from toolshed/abra
		
	
		
			
				
	
	
		
			105 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package x448
 | |
| 
 | |
| import (
 | |
| 	fp "github.com/cloudflare/circl/math/fp448"
 | |
| )
 | |
| 
 | |
| // ladderJoye calculates a fixed-point multiplication with the generator point.
 | |
| // The algorithm is the right-to-left Joye's ladder as described
 | |
| // in "How to precompute a ladder" in SAC'2017.
 | |
| func ladderJoye(k *Key) {
 | |
| 	w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
 | |
| 	w[1] = fp.Elt{   // x1 = S
 | |
| 		0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 	}
 | |
| 	fp.SetOne(&w[2]) // z1 = 1
 | |
| 	w[3] = fp.Elt{   // x2 = G-S
 | |
| 		0x20, 0x27, 0x9d, 0xc9, 0x7d, 0x19, 0xb1, 0xac,
 | |
| 		0xf8, 0xba, 0x69, 0x1c, 0xff, 0x33, 0xac, 0x23,
 | |
| 		0x51, 0x1b, 0xce, 0x3a, 0x64, 0x65, 0xbd, 0xf1,
 | |
| 		0x23, 0xf8, 0xc1, 0x84, 0x9d, 0x45, 0x54, 0x29,
 | |
| 		0x67, 0xb9, 0x81, 0x1c, 0x03, 0xd1, 0xcd, 0xda,
 | |
| 		0x7b, 0xeb, 0xff, 0x1a, 0x88, 0x03, 0xcf, 0x3a,
 | |
| 		0x42, 0x44, 0x32, 0x01, 0x25, 0xb7, 0xfa, 0xf0,
 | |
| 	}
 | |
| 	fp.SetOne(&w[4]) // z2 = 1
 | |
| 
 | |
| 	const n = 448
 | |
| 	const h = 2
 | |
| 	swap := uint(1)
 | |
| 	for s := 0; s < n-h; s++ {
 | |
| 		i := (s + h) / 8
 | |
| 		j := (s + h) % 8
 | |
| 		bit := uint((k[i] >> uint(j)) & 1)
 | |
| 		copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
 | |
| 		diffAdd(&w, swap^bit)
 | |
| 		swap = bit
 | |
| 	}
 | |
| 	for s := 0; s < h; s++ {
 | |
| 		double(&w[1], &w[2])
 | |
| 	}
 | |
| 	toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
 | |
| }
 | |
| 
 | |
| // ladderMontgomery calculates a generic scalar point multiplication
 | |
| // The algorithm implemented is the left-to-right Montgomery's ladder.
 | |
| func ladderMontgomery(k, xP *Key) {
 | |
| 	w := [5]fp.Elt{}      // [x1, x2, z2, x3, z3] order must be preserved.
 | |
| 	w[0] = *(*fp.Elt)(xP) // x1 = xP
 | |
| 	fp.SetOne(&w[1])      // x2 = 1
 | |
| 	w[3] = *(*fp.Elt)(xP) // x3 = xP
 | |
| 	fp.SetOne(&w[4])      // z3 = 1
 | |
| 
 | |
| 	move := uint(0)
 | |
| 	for s := 448 - 1; s >= 0; s-- {
 | |
| 		i := s / 8
 | |
| 		j := s % 8
 | |
| 		bit := uint((k[i] >> uint(j)) & 1)
 | |
| 		ladderStep(&w, move^bit)
 | |
| 		move = bit
 | |
| 	}
 | |
| 	toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
 | |
| }
 | |
| 
 | |
| func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
 | |
| 	fp.Inv(z, z)
 | |
| 	fp.Mul(x, x, z)
 | |
| 	_ = fp.ToBytes(k[:], x)
 | |
| }
 | |
| 
 | |
| var lowOrderPoints = [3]fp.Elt{
 | |
| 	{ /* (0,_,1) point of order 2 on Curve448 */
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 	},
 | |
| 	{ /* (1,_,1) a point of order 4 on the twist of Curve448 */
 | |
| 		0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| 	},
 | |
| 	{ /* (-1,_,1) point of order 4 on Curve448 */
 | |
| 		0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
| 	},
 | |
| }
 |