forked from toolshed/abra
		
	
		
			
				
	
	
		
			123 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Package mlsbset provides a constant-time exponentiation method with precomputation.
 | ||
| //
 | ||
| // References: "Efficient and secure algorithms for GLV-based scalar
 | ||
| // multiplication and their implementation on GLV–GLS curves" by (Faz-Hernandez et al.)
 | ||
| //   - https://doi.org/10.1007/s13389-014-0085-7
 | ||
| //   - https://eprint.iacr.org/2013/158
 | ||
| package mlsbset
 | ||
| 
 | ||
| import (
 | ||
| 	"errors"
 | ||
| 	"fmt"
 | ||
| 	"math/big"
 | ||
| 
 | ||
| 	"github.com/cloudflare/circl/internal/conv"
 | ||
| )
 | ||
| 
 | ||
| // EltG is a group element.
 | ||
| type EltG interface{}
 | ||
| 
 | ||
| // EltP is a precomputed group element.
 | ||
| type EltP interface{}
 | ||
| 
 | ||
| // Group defines the operations required by MLSBSet exponentiation method.
 | ||
| type Group interface {
 | ||
| 	Identity() EltG                    // Returns the identity of the group.
 | ||
| 	Sqr(x EltG)                        // Calculates x = x^2.
 | ||
| 	Mul(x EltG, y EltP)                // Calculates x = x*y.
 | ||
| 	NewEltP() EltP                     // Returns an arbitrary precomputed element.
 | ||
| 	ExtendedEltP() EltP                // Returns the precomputed element x^(2^(w*d)).
 | ||
| 	Lookup(a EltP, v uint, s, u int32) // Sets a = s*T[v][u].
 | ||
| }
 | ||
| 
 | ||
| // Params contains the parameters of the encoding.
 | ||
| type Params struct {
 | ||
| 	T uint // T is the maximum size (in bits) of exponents.
 | ||
| 	V uint // V is the number of tables.
 | ||
| 	W uint // W is the window size.
 | ||
| 	E uint // E is the number of digits per table.
 | ||
| 	D uint // D is the number of digits in total.
 | ||
| 	L uint // L is the length of the code.
 | ||
| }
 | ||
| 
 | ||
| // Encoder allows to convert integers into valid powers.
 | ||
| type Encoder struct{ p Params }
 | ||
| 
 | ||
| // New produces an encoder of the MLSBSet algorithm.
 | ||
| func New(t, v, w uint) (Encoder, error) {
 | ||
| 	if !(t > 1 && v >= 1 && w >= 2) {
 | ||
| 		return Encoder{}, errors.New("t>1, v>=1, w>=2")
 | ||
| 	}
 | ||
| 	e := (t + w*v - 1) / (w * v)
 | ||
| 	d := e * v
 | ||
| 	l := d * w
 | ||
| 	return Encoder{Params{t, v, w, e, d, l}}, nil
 | ||
| }
 | ||
| 
 | ||
| // Encode converts an odd integer k into a valid power for exponentiation.
 | ||
| func (m Encoder) Encode(k []byte) (*Power, error) {
 | ||
| 	if len(k) == 0 {
 | ||
| 		return nil, errors.New("empty slice")
 | ||
| 	}
 | ||
| 	if !(len(k) <= int(m.p.L+7)>>3) {
 | ||
| 		return nil, errors.New("k too big")
 | ||
| 	}
 | ||
| 	if k[0]%2 == 0 {
 | ||
| 		return nil, errors.New("k must be odd")
 | ||
| 	}
 | ||
| 	ap := int((m.p.L+7)/8) - len(k)
 | ||
| 	k = append(k, make([]byte, ap)...)
 | ||
| 	s := m.signs(k)
 | ||
| 	b := make([]int32, m.p.L-m.p.D)
 | ||
| 	c := conv.BytesLe2BigInt(k)
 | ||
| 	c.Rsh(c, m.p.D)
 | ||
| 	var bi big.Int
 | ||
| 	for i := m.p.D; i < m.p.L; i++ {
 | ||
| 		c0 := int32(c.Bit(0))
 | ||
| 		b[i-m.p.D] = s[i%m.p.D] * c0
 | ||
| 		bi.SetInt64(int64(b[i-m.p.D] >> 1))
 | ||
| 		c.Rsh(c, 1)
 | ||
| 		c.Sub(c, &bi)
 | ||
| 	}
 | ||
| 	carry := int(c.Int64())
 | ||
| 	return &Power{m, s, b, carry}, nil
 | ||
| }
 | ||
| 
 | ||
| // signs calculates the set of signs.
 | ||
| func (m Encoder) signs(k []byte) []int32 {
 | ||
| 	s := make([]int32, m.p.D)
 | ||
| 	s[m.p.D-1] = 1
 | ||
| 	for i := uint(1); i < m.p.D; i++ {
 | ||
| 		ki := int32((k[i>>3] >> (i & 0x7)) & 0x1)
 | ||
| 		s[i-1] = 2*ki - 1
 | ||
| 	}
 | ||
| 	return s
 | ||
| }
 | ||
| 
 | ||
| // GetParams returns the complementary parameters of the encoding.
 | ||
| func (m Encoder) GetParams() Params { return m.p }
 | ||
| 
 | ||
| // tableSize returns the size of each table.
 | ||
| func (m Encoder) tableSize() uint { return 1 << (m.p.W - 1) }
 | ||
| 
 | ||
| // Elts returns the total number of elements that must be precomputed.
 | ||
| func (m Encoder) Elts() uint { return m.p.V * m.tableSize() }
 | ||
| 
 | ||
| // IsExtended returns true if the element x^(2^(wd)) must be calculated.
 | ||
| func (m Encoder) IsExtended() bool { q := m.p.T / (m.p.V * m.p.W); return m.p.T == q*m.p.V*m.p.W }
 | ||
| 
 | ||
| // Ops returns the number of squares and multiplications executed during an exponentiation.
 | ||
| func (m Encoder) Ops() (S uint, M uint) {
 | ||
| 	S = m.p.E
 | ||
| 	M = m.p.E * m.p.V
 | ||
| 	if m.IsExtended() {
 | ||
| 		M++
 | ||
| 	}
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| func (m Encoder) String() string {
 | ||
| 	return fmt.Sprintf("T: %v W: %v V: %v e: %v d: %v l: %v wv|t: %v",
 | ||
| 		m.p.T, m.p.W, m.p.V, m.p.E, m.p.D, m.p.L, m.IsExtended())
 | ||
| }
 |