decentral1se 1723025fbf
build: go 1.24
We were running behind and there were quite some deprecations to update.
This was mostly in the upstream copy/pasta package but seems quite
minimal.
2025-03-16 12:31:45 +01:00

1458 lines
38 KiB
Go

package cellbuf
import (
"bytes"
"errors"
"io"
"os"
"strings"
"sync"
"github.com/charmbracelet/colorprofile"
"github.com/charmbracelet/x/ansi"
"github.com/charmbracelet/x/term"
)
// ErrInvalidDimensions is returned when the dimensions of a window are invalid
// for the operation.
var ErrInvalidDimensions = errors.New("invalid dimensions")
// notLocal returns whether the coordinates are not considered local movement
// using the defined thresholds.
// This takes the number of columns, and the coordinates of the current and
// target positions.
func notLocal(cols, fx, fy, tx, ty int) bool {
// The typical distance for a [ansi.CUP] sequence. Anything less than this
// is considered local movement.
const longDist = 8 - 1
return (tx > longDist) &&
(tx < cols-1-longDist) &&
(abs(ty-fy)+abs(tx-fx) > longDist)
}
// relativeCursorMove returns the relative cursor movement sequence using one or two
// of the following sequences [ansi.CUU], [ansi.CUD], [ansi.CUF], [ansi.CUB],
// [ansi.VPA], [ansi.HPA].
// When overwrite is true, this will try to optimize the sequence by using the
// screen cells values to move the cursor instead of using escape sequences.
func relativeCursorMove(s *Screen, fx, fy, tx, ty int, overwrite, useTabs, useBackspace bool) string {
var seq strings.Builder
width, height := s.newbuf.Width(), s.newbuf.Height()
if ty != fy {
var yseq string
if s.xtermLike && !s.opts.RelativeCursor {
yseq = ansi.VerticalPositionAbsolute(ty + 1)
}
// OPTIM: Use [ansi.LF] and [ansi.ReverseIndex] as optimizations.
if ty > fy {
n := ty - fy
if cud := ansi.CursorDown(n); yseq == "" || len(cud) < len(yseq) {
yseq = cud
}
shouldScroll := !s.opts.AltScreen && fy+n >= s.scrollHeight
if lf := strings.Repeat("\n", n); shouldScroll || (fy+n < height && len(lf) < len(yseq)) {
// TODO: Ensure we're not unintentionally scrolling the screen down.
yseq = lf
s.scrollHeight = max(s.scrollHeight, fy+n)
}
} else if ty < fy {
n := fy - ty
if cuu := ansi.CursorUp(n); yseq == "" || len(cuu) < len(yseq) {
yseq = cuu
}
if n == 1 && fy-1 > 0 {
// TODO: Ensure we're not unintentionally scrolling the screen up.
yseq = ansi.ReverseIndex
}
}
seq.WriteString(yseq)
}
if tx != fx {
var xseq string
if s.xtermLike && !s.opts.RelativeCursor {
xseq = ansi.HorizontalPositionAbsolute(tx + 1)
}
if tx > fx {
n := tx - fx
if useTabs {
var tabs int
var col int
for col = fx; s.tabs.Next(col) <= tx; col = s.tabs.Next(col) {
tabs++
if col == s.tabs.Next(col) || col >= width-1 {
break
}
}
if tabs > 0 {
cht := ansi.CursorHorizontalForwardTab(tabs)
tab := strings.Repeat("\t", tabs)
if false && s.xtermLike && len(cht) < len(tab) {
// TODO: The linux console and some terminals such as
// Alacritty don't support [ansi.CHT]. Enable this when
// we have a way to detect this, or after 5 years when
// we're sure everyone has updated their terminals :P
seq.WriteString(cht)
} else {
seq.WriteString(tab)
}
n = tx - col
fx = col
}
}
if cuf := ansi.CursorForward(n); xseq == "" || len(cuf) < len(xseq) {
xseq = cuf
}
// If we have no attribute and style changes, overwrite is cheaper.
var ovw string
if overwrite && ty >= 0 {
for i := 0; i < n; i++ {
cell := s.newbuf.Cell(fx+i, ty)
if cell != nil && cell.Width > 0 {
i += cell.Width - 1
if !cell.Style.Equal(&s.cur.Style) || !cell.Link.Equal(&s.cur.Link) {
overwrite = false
break
}
}
}
}
if overwrite && ty >= 0 {
for i := 0; i < n; i++ {
cell := s.newbuf.Cell(fx+i, ty)
if cell != nil && cell.Width > 0 {
ovw += cell.String()
i += cell.Width - 1
} else {
ovw += " "
}
}
}
if overwrite && len(ovw) < len(xseq) {
xseq = ovw
}
} else if tx < fx {
n := fx - tx
if useTabs && s.xtermLike {
// VT100 does not support backward tabs [ansi.CBT].
col := fx
var cbt int // cursor backward tabs count
for s.tabs.Prev(col) >= tx {
col = s.tabs.Prev(col)
cbt++
if col == s.tabs.Prev(col) || col <= 0 {
break
}
}
if cbt > 0 {
seq.WriteString(ansi.CursorBackwardTab(cbt))
n = col - tx
}
}
if cub := ansi.CursorBackward(n); xseq == "" || len(cub) < len(xseq) {
xseq = cub
}
if useBackspace && n < len(xseq) {
xseq = strings.Repeat("\b", n)
}
}
seq.WriteString(xseq)
}
return seq.String()
}
// moveCursor moves and returns the cursor movement sequence to move the cursor
// to the specified position.
// When overwrite is true, this will try to optimize the sequence by using the
// screen cells values to move the cursor instead of using escape sequences.
func moveCursor(s *Screen, x, y int, overwrite bool) (seq string) {
fx, fy := s.cur.X, s.cur.Y
if !s.opts.RelativeCursor {
// Method #0: Use [ansi.CUP] if the distance is long.
seq = ansi.CursorPosition(x+1, y+1)
if fx == -1 || fy == -1 || notLocal(s.newbuf.Width(), fx, fy, x, y) {
return
}
}
// Optimize based on options.
trials := 0
if s.opts.HardTabs {
trials |= 2 // 0b10 in binary
}
if s.opts.Backspace {
trials |= 1 // 0b01 in binary
}
// Try all possible combinations of hard tabs and backspace optimizations.
for i := 0; i <= trials; i++ {
// Skip combinations that are not enabled.
if i & ^trials != 0 {
continue
}
useHardTabs := i&2 != 0
useBackspace := i&1 != 0
// Method #1: Use local movement sequences.
nseq := relativeCursorMove(s, fx, fy, x, y, overwrite, useHardTabs, useBackspace)
if (i == 0 && len(seq) == 0) || len(nseq) < len(seq) {
seq = nseq
}
// Method #2: Use [ansi.CR] and local movement sequences.
nseq = "\r" + relativeCursorMove(s, 0, fy, x, y, overwrite, useHardTabs, useBackspace)
if len(nseq) < len(seq) {
seq = nseq
}
if !s.opts.RelativeCursor {
// Method #3: Use [ansi.CursorHomePosition] and local movement sequences.
nseq = ansi.CursorHomePosition + relativeCursorMove(s, 0, 0, x, y, overwrite, useHardTabs, useBackspace)
if len(nseq) < len(seq) {
seq = nseq
}
}
}
return
}
// moveCursor moves the cursor to the specified position.
func (s *Screen) moveCursor(x, y int, overwrite bool) {
if !s.opts.AltScreen && s.cur.X == -1 && s.cur.Y == -1 {
// First cursor movement in inline mode, move the cursor to the first
// column before moving to the target position.
s.buf.WriteByte('\r') //nolint:errcheck
s.cur.X, s.cur.Y = 0, 0
}
s.buf.WriteString(moveCursor(s, x, y, overwrite)) //nolint:errcheck
s.cur.X, s.cur.Y = x, y
}
func (s *Screen) move(x, y int) {
// XXX: Make sure we use the max height and width of the buffer in case
// we're in the middle of a resize operation.
width := max(s.newbuf.Width(), s.curbuf.Width())
height := max(s.newbuf.Height(), s.curbuf.Height())
if width > 0 && x >= width {
// Handle autowrap
y += (x / width)
x %= width
}
// XXX: Disable styles if there's any
// Some move operations such as [ansi.LF] can apply styles to the new
// cursor position, thus, we need to reset the styles before moving the
// cursor.
blank := s.clearBlank()
resetPen := y != s.cur.Y && !blank.Equal(&BlankCell)
if resetPen {
s.updatePen(nil)
}
// Reset wrap around (phantom cursor) state
if s.atPhantom {
s.cur.X = 0
s.buf.WriteByte('\r') //nolint:errcheck
s.atPhantom = false // reset phantom cell state
}
// TODO: Investigate if we need to handle this case and/or if we need the
// following code.
//
// if width > 0 && s.cur.X >= width {
// l := (s.cur.X + 1) / width
//
// s.cur.Y += l
// if height > 0 && s.cur.Y >= height {
// l -= s.cur.Y - height - 1
// }
//
// if l > 0 {
// s.cur.X = 0
// s.buf.WriteString("\r" + strings.Repeat("\n", l)) //nolint:errcheck
// }
// }
if height > 0 {
if s.cur.Y > height-1 {
s.cur.Y = height - 1
}
if y > height-1 {
y = height - 1
}
}
if x == s.cur.X && y == s.cur.Y {
// We give up later because we need to run checks for the phantom cell
// and others before we can determine if we can give up.
return
}
// We set the new cursor in [Screen.moveCursor].
s.moveCursor(x, y, true) // Overwrite cells if possible
}
// Cursor represents a terminal Cursor.
type Cursor struct {
Style
Link
Position
}
// ScreenOptions are options for the screen.
type ScreenOptions struct {
// Term is the terminal type to use when writing to the screen. When empty,
// `$TERM` is used from [os.Getenv].
Term string
// Profile is the color profile to use when writing to the screen.
Profile colorprofile.Profile
// RelativeCursor is whether to use relative cursor movements. This is
// useful when alt-screen is not used or when using inline mode.
RelativeCursor bool
// AltScreen is whether to use the alternate screen buffer.
AltScreen bool
// ShowCursor is whether to show the cursor.
ShowCursor bool
// HardTabs is whether to use hard tabs to optimize cursor movements.
HardTabs bool
// Backspace is whether to use backspace characters to move the cursor.
Backspace bool
}
// lineData represents the metadata for a line.
type lineData struct {
// first and last changed cell indices
firstCell, lastCell int
// old index used for scrolling
oldIndex int //nolint:unused
}
// Screen represents the terminal screen.
type Screen struct {
w io.Writer
buf *bytes.Buffer // buffer for writing to the screen
curbuf *Buffer // the current buffer
newbuf *Buffer // the new buffer
tabs *TabStops
touch map[int]lineData
queueAbove []string // the queue of strings to write above the screen
oldhash, newhash []uint64 // the old and new hash values for each line
hashtab []hashmap // the hashmap table
oldnum []int // old indices from previous hash
cur, saved Cursor // the current and saved cursors
opts ScreenOptions
mu sync.Mutex
method ansi.Method
scrollHeight int // keeps track of how many lines we've scrolled down (inline mode)
altScreenMode bool // whether alternate screen mode is enabled
cursorHidden bool // whether text cursor mode is enabled
clear bool // whether to force clear the screen
xtermLike bool // whether to use xterm-like optimizations, otherwise, it uses vt100 only
queuedText bool // whether we have queued non-zero width text queued up
atPhantom bool // whether the cursor is out of bounds and at a phantom cell
}
// SetMethod sets the method used to calculate the width of cells.
func (s *Screen) SetMethod(method ansi.Method) {
s.method = method
}
// UseBackspaces sets whether to use backspace characters to move the cursor.
func (s *Screen) UseBackspaces(v bool) {
s.opts.Backspace = v
}
// UseHardTabs sets whether to use hard tabs to optimize cursor movements.
func (s *Screen) UseHardTabs(v bool) {
s.opts.HardTabs = v
}
// SetColorProfile sets the color profile to use when writing to the screen.
func (s *Screen) SetColorProfile(p colorprofile.Profile) {
s.opts.Profile = p
}
// SetRelativeCursor sets whether to use relative cursor movements.
func (s *Screen) SetRelativeCursor(v bool) {
s.opts.RelativeCursor = v
}
// EnterAltScreen enters the alternate screen buffer.
func (s *Screen) EnterAltScreen() {
s.opts.AltScreen = true
s.clear = true
s.saved = s.cur
}
// ExitAltScreen exits the alternate screen buffer.
func (s *Screen) ExitAltScreen() {
s.opts.AltScreen = false
s.clear = true
s.cur = s.saved
}
// ShowCursor shows the cursor.
func (s *Screen) ShowCursor() {
s.opts.ShowCursor = true
}
// HideCursor hides the cursor.
func (s *Screen) HideCursor() {
s.opts.ShowCursor = false
}
// Bounds implements Window.
func (s *Screen) Bounds() Rectangle {
// Always return the new buffer bounds.
return s.newbuf.Bounds()
}
// Cell implements Window.
func (s *Screen) Cell(x int, y int) *Cell {
return s.newbuf.Cell(x, y)
}
// Redraw forces a full redraw of the screen.
func (s *Screen) Redraw() {
s.mu.Lock()
s.clear = true
s.mu.Unlock()
}
// Clear clears the screen with blank cells. This is a convenience method for
// [Screen.Fill] with a nil cell.
func (s *Screen) Clear() bool {
return s.ClearRect(s.newbuf.Bounds())
}
// ClearRect clears the given rectangle with blank cells. This is a convenience
// method for [Screen.FillRect] with a nil cell.
func (s *Screen) ClearRect(r Rectangle) bool {
return s.FillRect(nil, r)
}
// SetCell implements Window.
func (s *Screen) SetCell(x int, y int, cell *Cell) (v bool) {
s.mu.Lock()
defer s.mu.Unlock()
cellWidth := 1
if cell != nil {
cellWidth = cell.Width
}
if prev := s.curbuf.Cell(x, y); !cellEqual(prev, cell) {
chg, ok := s.touch[y]
if !ok {
chg = lineData{firstCell: x, lastCell: x + cellWidth}
} else {
chg.firstCell = min(chg.firstCell, x)
chg.lastCell = max(chg.lastCell, x+cellWidth)
}
s.touch[y] = chg
}
return s.newbuf.SetCell(x, y, cell)
}
// Fill implements Window.
func (s *Screen) Fill(cell *Cell) bool {
return s.FillRect(cell, s.newbuf.Bounds())
}
// FillRect implements Window.
func (s *Screen) FillRect(cell *Cell, r Rectangle) bool {
s.mu.Lock()
defer s.mu.Unlock()
s.newbuf.FillRect(cell, r)
for i := r.Min.Y; i < r.Max.Y; i++ {
s.touch[i] = lineData{firstCell: r.Min.X, lastCell: r.Max.X}
}
return true
}
// isXtermLike returns whether the terminal is xterm-like. This means that the
// terminal supports ECMA-48 and ANSI X3.64 escape sequences.
// TODO: Should this be a lookup table into each $TERM terminfo database? Like
// we could keep a map of ANSI escape sequence to terminfo capability name and
// check if the database supports the escape sequence. Instead of keeping a
// list of terminal names here.
func isXtermLike(termtype string) (v bool) {
parts := strings.Split(termtype, "-")
if len(parts) == 0 {
return
}
switch parts[0] {
case
"alacritty",
"contour",
"foot",
"ghostty",
"kitty",
"linux",
"rio",
"screen",
"st",
"tmux",
"wezterm",
"xterm":
v = true
}
return
}
// NewScreen creates a new Screen.
func NewScreen(w io.Writer, width, height int, opts *ScreenOptions) (s *Screen) {
s = new(Screen)
s.w = w
if opts != nil {
s.opts = *opts
}
if s.opts.Term == "" {
s.opts.Term = os.Getenv("TERM")
}
if width <= 0 || height <= 0 {
if f, ok := w.(term.File); ok {
width, height, _ = term.GetSize(f.Fd())
}
}
if width < 0 {
width = 0
}
if height < 0 {
height = 0
}
s.buf = new(bytes.Buffer)
s.xtermLike = isXtermLike(s.opts.Term)
s.curbuf = NewBuffer(width, height)
s.newbuf = NewBuffer(width, height)
s.cur = Cursor{Position: Pos(-1, -1)} // start at -1 to force a move
s.saved = s.cur
s.reset()
return
}
// Width returns the width of the screen.
func (s *Screen) Width() int {
return s.newbuf.Width()
}
// Height returns the height of the screen.
func (s *Screen) Height() int {
return s.newbuf.Height()
}
// cellEqual returns whether the two cells are equal. A nil cell is considered
// a [BlankCell].
func cellEqual(a, b *Cell) bool {
if a == b {
return true
}
if a == nil {
a = &BlankCell
}
if b == nil {
b = &BlankCell
}
return a.Equal(b)
}
// putCell draws a cell at the current cursor position.
func (s *Screen) putCell(cell *Cell) {
width, height := s.newbuf.Width(), s.newbuf.Height()
if s.opts.AltScreen && s.cur.X == width-1 && s.cur.Y == height-1 {
s.putCellLR(cell)
} else {
s.putAttrCell(cell)
}
}
// wrapCursor wraps the cursor to the next line.
//
//nolint:unused
func (s *Screen) wrapCursor() {
const autoRightMargin = true
if autoRightMargin {
// Assume we have auto wrap mode enabled.
s.cur.X = 0
s.cur.Y++
} else {
s.cur.X--
}
}
func (s *Screen) putAttrCell(cell *Cell) {
if cell != nil && cell.Empty() {
// XXX: Zero width cells are special and should not be written to the
// screen no matter what other attributes they have.
// Zero width cells are used for wide characters that are split into
// multiple cells.
return
}
if cell == nil {
cell = s.clearBlank()
}
// We're at pending wrap state (phantom cell), incoming cell should
// wrap.
if s.atPhantom {
s.wrapCursor()
s.atPhantom = false
}
s.updatePen(cell)
s.buf.WriteRune(cell.Rune) //nolint:errcheck
for _, c := range cell.Comb {
s.buf.WriteRune(c) //nolint:errcheck
}
s.cur.X += cell.Width
if cell.Width > 0 {
s.queuedText = true
}
if s.cur.X >= s.newbuf.Width() {
s.atPhantom = true
}
}
// putCellLR draws a cell at the lower right corner of the screen.
func (s *Screen) putCellLR(cell *Cell) {
// Optimize for the lower right corner cell.
curX := s.cur.X
if cell == nil || !cell.Empty() {
s.buf.WriteString(ansi.ResetAutoWrapMode) //nolint:errcheck
s.putAttrCell(cell)
// Writing to lower-right corner cell should not wrap.
s.atPhantom = false
s.cur.X = curX
s.buf.WriteString(ansi.SetAutoWrapMode) //nolint:errcheck
}
}
// updatePen updates the cursor pen styles.
func (s *Screen) updatePen(cell *Cell) {
if cell == nil {
cell = &BlankCell
}
if s.opts.Profile != 0 {
// Downsample colors to the given color profile.
cell.Style = ConvertStyle(cell.Style, s.opts.Profile)
cell.Link = ConvertLink(cell.Link, s.opts.Profile)
}
if !cell.Style.Equal(&s.cur.Style) {
seq := cell.Style.DiffSequence(s.cur.Style)
if cell.Style.Empty() && len(seq) > len(ansi.ResetStyle) {
seq = ansi.ResetStyle
}
s.buf.WriteString(seq) //nolint:errcheck
s.cur.Style = cell.Style
}
if !cell.Link.Equal(&s.cur.Link) {
s.buf.WriteString(ansi.SetHyperlink(cell.Link.URL, cell.Link.Params)) //nolint:errcheck
s.cur.Link = cell.Link
}
}
// emitRange emits a range of cells to the buffer. It it equivalent to calling
// [Screen.putCell] for each cell in the range. This is optimized to use
// [ansi.ECH] and [ansi.REP].
// Returns whether the cursor is at the end of interval or somewhere in the
// middle.
func (s *Screen) emitRange(line Line, n int) (eoi bool) {
for n > 0 {
var count int
for n > 1 && !cellEqual(line.At(0), line.At(1)) {
s.putCell(line.At(0))
line = line[1:]
n--
}
cell0 := line[0]
if n == 1 {
s.putCell(cell0)
return false
}
count = 2
for count < n && cellEqual(line.At(count), cell0) {
count++
}
ech := ansi.EraseCharacter(count)
cup := ansi.CursorPosition(s.cur.X+count, s.cur.Y)
rep := ansi.RepeatPreviousCharacter(count)
if s.xtermLike && count > len(ech)+len(cup) && cell0 != nil && cell0.Clear() {
s.updatePen(cell0)
s.buf.WriteString(ech) //nolint:errcheck
// If this is the last cell, we don't need to move the cursor.
if count < n {
s.move(s.cur.X+count, s.cur.Y)
} else {
return true // cursor in the middle
}
} else if s.xtermLike && count > len(rep) &&
(cell0 == nil || (len(cell0.Comb) == 0 && cell0.Rune < 256)) {
// We only support ASCII characters. Most terminals will handle
// non-ASCII characters correctly, but some might not, ahem xterm.
//
// NOTE: [ansi.REP] only repeats the last rune and won't work
// if the last cell contains multiple runes.
wrapPossible := s.cur.X+count >= s.newbuf.Width()
repCount := count
if wrapPossible {
repCount--
}
s.updatePen(cell0)
s.putCell(cell0)
repCount-- // cell0 is a single width cell ASCII character
s.buf.WriteString(ansi.RepeatPreviousCharacter(repCount)) //nolint:errcheck
s.cur.X += repCount
if wrapPossible {
s.putCell(cell0)
}
} else {
for i := 0; i < count; i++ {
s.putCell(line.At(i))
}
}
line = line[clamp(count, 0, len(line)):]
n -= count
}
return
}
// putRange puts a range of cells from the old line to the new line.
// Returns whether the cursor is at the end of interval or somewhere in the
// middle.
func (s *Screen) putRange(oldLine, newLine Line, y, start, end int) (eoi bool) {
inline := min(len(ansi.CursorPosition(start+1, y+1)),
min(len(ansi.HorizontalPositionAbsolute(start+1)),
len(ansi.CursorForward(start+1))))
if (end - start + 1) > inline {
var j, same int
for j, same = start, 0; j <= end; j++ {
oldCell, newCell := oldLine.At(j), newLine.At(j)
if same == 0 && oldCell != nil && oldCell.Empty() {
continue
}
if cellEqual(oldCell, newCell) {
same++
} else {
if same > end-start {
s.emitRange(newLine[start:], j-same-start)
s.move(j, y)
start = j
}
same = 0
}
}
i := s.emitRange(newLine[start:], j-same-start)
// Always return 1 for the next [Screen.move] after a [Screen.putRange] if
// we found identical characters at end of interval.
if same == 0 {
return i
}
return true
}
return s.emitRange(newLine[start:], end-start+1)
}
// clearToEnd clears the screen from the current cursor position to the end of
// line.
func (s *Screen) clearToEnd(blank *Cell, force bool) { //nolint:unparam
if s.cur.Y >= 0 {
curline := s.curbuf.Line(s.cur.Y)
for j := s.cur.X; j < s.curbuf.Width(); j++ {
if j >= 0 {
c := curline.At(j)
if !cellEqual(c, blank) {
curline.Set(j, blank)
force = true
}
}
}
}
if force {
s.updatePen(blank)
count := s.newbuf.Width() - s.cur.X
if s.el0Cost() <= count {
s.buf.WriteString(ansi.EraseLineRight) //nolint:errcheck
} else {
for i := 0; i < count; i++ {
s.putCell(blank)
}
}
}
}
// clearBlank returns a blank cell based on the current cursor background color.
func (s *Screen) clearBlank() *Cell {
c := BlankCell
if !s.cur.Style.Empty() || !s.cur.Link.Empty() {
c.Style = s.cur.Style
c.Link = s.cur.Link
}
return &c
}
// insertCells inserts the count cells pointed by the given line at the current
// cursor position.
func (s *Screen) insertCells(line Line, count int) {
if s.xtermLike {
// Use [ansi.ICH] as an optimization.
s.buf.WriteString(ansi.InsertCharacter(count)) //nolint:errcheck
} else {
// Otherwise, use [ansi.IRM] mode.
s.buf.WriteString(ansi.SetInsertReplaceMode) //nolint:errcheck
}
for i := 0; count > 0; i++ {
s.putAttrCell(line[i])
count--
}
if !s.xtermLike {
s.buf.WriteString(ansi.ResetInsertReplaceMode) //nolint:errcheck
}
}
// el0Cost returns the cost of using [ansi.EL] 0 i.e. [ansi.EraseLineRight]. If
// this terminal supports background color erase, it can be cheaper to use
// [ansi.EL] 0 i.e. [ansi.EraseLineRight] to clear
// trailing spaces.
func (s *Screen) el0Cost() int {
if s.xtermLike {
return 0
}
return len(ansi.EraseLineRight)
}
// transformLine transforms the given line in the current window to the
// corresponding line in the new window. It uses [ansi.ICH] and [ansi.DCH] to
// insert or delete characters.
func (s *Screen) transformLine(y int) {
var firstCell, oLastCell, nLastCell int // first, old last, new last index
oldLine := s.curbuf.Line(y)
newLine := s.newbuf.Line(y)
// Find the first changed cell in the line
var lineChanged bool
for i := 0; i < s.newbuf.Width(); i++ {
if !cellEqual(newLine.At(i), oldLine.At(i)) {
lineChanged = true
break
}
}
const ceolStandoutGlitch = false
if ceolStandoutGlitch && lineChanged {
s.move(0, y)
s.clearToEnd(nil, false)
s.putRange(oldLine, newLine, y, 0, s.newbuf.Width()-1)
} else {
blank := newLine.At(0)
// It might be cheaper to clear leading spaces with [ansi.EL] 1 i.e.
// [ansi.EraseLineLeft].
if blank == nil || blank.Clear() {
var oFirstCell, nFirstCell int
for oFirstCell = 0; oFirstCell < s.curbuf.Width(); oFirstCell++ {
if !cellEqual(oldLine.At(oFirstCell), blank) {
break
}
}
for nFirstCell = 0; nFirstCell < s.newbuf.Width(); nFirstCell++ {
if !cellEqual(newLine.At(nFirstCell), blank) {
break
}
}
if nFirstCell == oFirstCell {
firstCell = nFirstCell
// Find the first differing cell
for firstCell < s.newbuf.Width() &&
cellEqual(oldLine.At(firstCell), newLine.At(firstCell)) {
firstCell++
}
} else if oFirstCell > nFirstCell {
firstCell = nFirstCell
} else if oFirstCell < nFirstCell {
firstCell = oFirstCell
el1Cost := len(ansi.EraseLineLeft)
if el1Cost < nFirstCell-oFirstCell {
if nFirstCell >= s.newbuf.Width() {
s.move(0, y)
s.updatePen(blank)
s.buf.WriteString(ansi.EraseLineRight) //nolint:errcheck
} else {
s.move(nFirstCell-1, y)
s.updatePen(blank)
s.buf.WriteString(ansi.EraseLineLeft) //nolint:errcheck
}
for firstCell < nFirstCell {
oldLine.Set(firstCell, blank)
firstCell++
}
}
}
} else {
// Find the first differing cell
for firstCell < s.newbuf.Width() && cellEqual(newLine.At(firstCell), oldLine.At(firstCell)) {
firstCell++
}
}
// If we didn't find one, we're done
if firstCell >= s.newbuf.Width() {
return
}
blank = newLine.At(s.newbuf.Width() - 1)
if blank != nil && !blank.Clear() {
// Find the last differing cell
nLastCell = s.newbuf.Width() - 1
for nLastCell > firstCell && cellEqual(newLine.At(nLastCell), oldLine.At(nLastCell)) {
nLastCell--
}
if nLastCell >= firstCell {
s.move(firstCell, y)
s.putRange(oldLine, newLine, y, firstCell, nLastCell)
if firstCell < len(oldLine) && firstCell < len(newLine) {
copy(oldLine[firstCell:], newLine[firstCell:])
} else {
copy(oldLine, newLine)
}
}
return
}
// Find last non-blank cell in the old line.
oLastCell = s.curbuf.Width() - 1
for oLastCell > firstCell && cellEqual(oldLine.At(oLastCell), blank) {
oLastCell--
}
// Find last non-blank cell in the new line.
nLastCell = s.newbuf.Width() - 1
for nLastCell > firstCell && cellEqual(newLine.At(nLastCell), blank) {
nLastCell--
}
if nLastCell == firstCell && s.el0Cost() < oLastCell-nLastCell {
s.move(firstCell, y)
if !cellEqual(newLine.At(firstCell), blank) {
s.putCell(newLine.At(firstCell))
}
s.clearToEnd(blank, false)
} else if nLastCell != oLastCell &&
!cellEqual(newLine.At(nLastCell), oldLine.At(oLastCell)) {
s.move(firstCell, y)
if oLastCell-nLastCell > s.el0Cost() {
if s.putRange(oldLine, newLine, y, firstCell, nLastCell) {
s.move(nLastCell+1, y)
}
s.clearToEnd(blank, false)
} else {
n := max(nLastCell, oLastCell)
s.putRange(oldLine, newLine, y, firstCell, n)
}
} else {
nLastNonBlank := nLastCell
oLastNonBlank := oLastCell
// Find the last cells that really differ.
// Can be -1 if no cells differ.
for cellEqual(newLine.At(nLastCell), oldLine.At(oLastCell)) {
if !cellEqual(newLine.At(nLastCell-1), oldLine.At(oLastCell-1)) {
break
}
nLastCell--
oLastCell--
if nLastCell == -1 || oLastCell == -1 {
break
}
}
n := min(oLastCell, nLastCell)
if n >= firstCell {
s.move(firstCell, y)
s.putRange(oldLine, newLine, y, firstCell, n)
}
if oLastCell < nLastCell {
m := max(nLastNonBlank, oLastNonBlank)
if n != 0 {
for n > 0 {
wide := newLine.At(n + 1)
if wide == nil || !wide.Empty() {
break
}
n--
oLastCell--
}
} else if n >= firstCell && newLine.At(n) != nil && newLine.At(n).Width > 1 {
next := newLine.At(n + 1)
for next != nil && next.Empty() {
n++
oLastCell++
}
}
s.move(n+1, y)
ichCost := 3 + nLastCell - oLastCell
if s.xtermLike && (nLastCell < nLastNonBlank || ichCost > (m-n)) {
s.putRange(oldLine, newLine, y, n+1, m)
} else {
s.insertCells(newLine[n+1:], nLastCell-oLastCell)
}
} else if oLastCell > nLastCell {
s.move(n+1, y)
dchCost := 3 + oLastCell - nLastCell
if dchCost > len(ansi.EraseLineRight)+nLastNonBlank-(n+1) {
if s.putRange(oldLine, newLine, y, n+1, nLastNonBlank) {
s.move(nLastNonBlank+1, y)
}
s.clearToEnd(blank, false)
} else {
s.updatePen(blank)
s.deleteCells(oLastCell - nLastCell)
}
}
}
}
// Update the old line with the new line
if firstCell < len(oldLine) && firstCell < len(newLine) {
copy(oldLine[firstCell:], newLine[firstCell:])
} else {
copy(oldLine, newLine)
}
}
// deleteCells deletes the count cells at the current cursor position and moves
// the rest of the line to the left. This is equivalent to [ansi.DCH].
func (s *Screen) deleteCells(count int) {
// [ansi.DCH] will shift in cells from the right margin so we need to
// ensure that they are the right style.
s.buf.WriteString(ansi.DeleteCharacter(count)) //nolint:errcheck
}
// clearToBottom clears the screen from the current cursor position to the end
// of the screen.
func (s *Screen) clearToBottom(blank *Cell) {
row, col := s.cur.Y, s.cur.X
if row < 0 {
row = 0
}
s.updatePen(blank)
s.buf.WriteString(ansi.EraseScreenBelow) //nolint:errcheck
// Clear the rest of the current line
s.curbuf.ClearRect(Rect(col, row, s.curbuf.Width()-col, 1))
// Clear everything below the current line
s.curbuf.ClearRect(Rect(0, row+1, s.curbuf.Width(), s.curbuf.Height()-row-1))
}
// clearBottom tests if clearing the end of the screen would satisfy part of
// the screen update. Scan backwards through lines in the screen checking if
// each is blank and one or more are changed.
// It returns the top line.
func (s *Screen) clearBottom(total int) (top int) {
if total <= 0 {
return
}
top = total
last := s.newbuf.Width()
blank := s.clearBlank()
canClearWithBlank := blank == nil || blank.Clear()
if canClearWithBlank {
var row int
for row = total - 1; row >= 0; row-- {
oldLine := s.curbuf.Line(row)
newLine := s.newbuf.Line(row)
var col int
ok := true
for col = 0; ok && col < last; col++ {
ok = cellEqual(newLine.At(col), blank)
}
if !ok {
break
}
for col = 0; ok && col < last; col++ {
ok = len(oldLine) == last && cellEqual(oldLine.At(col), blank)
}
if !ok {
top = row
}
}
if top < total {
s.move(0, top-1) // top is 1-based
s.clearToBottom(blank)
if s.oldhash != nil && s.newhash != nil &&
row < len(s.oldhash) && row < len(s.newhash) {
for row := top; row < s.newbuf.Height(); row++ {
s.oldhash[row] = s.newhash[row]
}
}
}
}
return
}
// clearScreen clears the screen and put cursor at home.
func (s *Screen) clearScreen(blank *Cell) {
s.updatePen(blank)
s.buf.WriteString(ansi.CursorHomePosition) //nolint:errcheck
s.buf.WriteString(ansi.EraseEntireScreen) //nolint:errcheck
s.cur.X, s.cur.Y = 0, 0
s.curbuf.Fill(blank)
}
// clearBelow clears everything below and including the row.
func (s *Screen) clearBelow(blank *Cell, row int) {
s.move(0, row)
s.clearToBottom(blank)
}
// clearUpdate forces a screen redraw.
func (s *Screen) clearUpdate() {
blank := s.clearBlank()
var nonEmpty int
if s.opts.AltScreen {
// XXX: We're using the maximum height of the two buffers to ensure
// we write newly added lines to the screen in [Screen.transformLine].
nonEmpty = max(s.curbuf.Height(), s.newbuf.Height())
s.clearScreen(blank)
} else {
nonEmpty = s.newbuf.Height()
s.clearBelow(blank, 0)
}
nonEmpty = s.clearBottom(nonEmpty)
for i := 0; i < nonEmpty; i++ {
s.transformLine(i)
}
}
// Flush flushes the buffer to the screen.
func (s *Screen) Flush() (err error) {
s.mu.Lock()
defer s.mu.Unlock()
return s.flush()
}
func (s *Screen) flush() (err error) {
// Write the buffer
if s.buf.Len() > 0 {
_, err = s.w.Write(s.buf.Bytes()) //nolint:errcheck
if err == nil {
s.buf.Reset()
}
}
return
}
// Render renders changes of the screen to the internal buffer. Call
// [Screen.Flush] to flush pending changes to the screen.
func (s *Screen) Render() {
s.mu.Lock()
s.render()
s.mu.Unlock()
}
func (s *Screen) render() {
// Do we need to render anything?
if s.opts.AltScreen == s.altScreenMode &&
!s.opts.ShowCursor == s.cursorHidden &&
!s.clear &&
len(s.touch) == 0 &&
len(s.queueAbove) == 0 {
return
}
// TODO: Investigate whether this is necessary. Theoretically, terminals
// can add/remove tab stops and we should be able to handle that. We could
// use [ansi.DECTABSR] to read the tab stops, but that's not implemented in
// most terminals :/
// // Are we using hard tabs? If so, ensure tabs are using the
// // default interval using [ansi.DECST8C].
// if s.opts.HardTabs && !s.initTabs {
// s.buf.WriteString(ansi.SetTabEvery8Columns)
// s.initTabs = true
// }
// Do we need alt-screen mode?
if s.opts.AltScreen != s.altScreenMode {
if s.opts.AltScreen {
s.buf.WriteString(ansi.SetAltScreenSaveCursorMode)
} else {
s.buf.WriteString(ansi.ResetAltScreenSaveCursorMode)
}
s.altScreenMode = s.opts.AltScreen
}
// Do we need text cursor mode?
if !s.opts.ShowCursor != s.cursorHidden {
s.cursorHidden = !s.opts.ShowCursor
if s.cursorHidden {
s.buf.WriteString(ansi.HideCursor)
}
}
// Do we have queued strings to write above the screen?
if len(s.queueAbove) > 0 {
// TODO: Use scrolling region if available.
// TODO: Use [Screen.Write] [io.Writer] interface.
// We need to scroll the screen up by the number of lines in the queue.
// We can't use [ansi.SU] because we want the cursor to move down until
// it reaches the bottom of the screen.
s.move(0, s.newbuf.Height()-1)
s.buf.WriteString(strings.Repeat("\n", len(s.queueAbove)))
s.cur.Y += len(s.queueAbove)
// XXX: Now go to the top of the screen, insert new lines, and write
// the queued strings. It is important to use [Screen.moveCursor]
// instead of [Screen.move] because we don't want to perform any checks
// on the cursor position.
s.moveCursor(0, 0, false)
s.buf.WriteString(ansi.InsertLine(len(s.queueAbove)))
for _, line := range s.queueAbove {
s.buf.WriteString(line + "\r\n")
}
// Clear the queue
s.queueAbove = s.queueAbove[:0]
}
var nonEmpty int
// XXX: In inline mode, after a screen resize, we need to clear the extra
// lines at the bottom of the screen. This is because in inline mode, we
// don't use the full screen height and the current buffer size might be
// larger than the new buffer size.
partialClear := !s.opts.AltScreen && s.cur.X != -1 && s.cur.Y != -1 &&
s.curbuf.Width() == s.newbuf.Width() &&
s.curbuf.Height() > 0 &&
s.curbuf.Height() > s.newbuf.Height()
if !s.clear && partialClear {
s.clearBelow(nil, s.newbuf.Height()-1)
}
if s.clear {
s.clearUpdate()
s.clear = false
} else if len(s.touch) > 0 {
if s.opts.AltScreen {
// Optimize scrolling for the alternate screen buffer.
// TODO: Should we optimize for inline mode as well? If so, we need
// to know the actual cursor position to use [ansi.DECSTBM].
s.scrollOptimize()
}
var changedLines int
var i int
if s.opts.AltScreen {
nonEmpty = min(s.curbuf.Height(), s.newbuf.Height())
} else {
nonEmpty = s.newbuf.Height()
}
nonEmpty = s.clearBottom(nonEmpty)
for i = 0; i < nonEmpty; i++ {
_, ok := s.touch[i]
if ok {
s.transformLine(i)
changedLines++
}
}
}
// Sync windows and screen
s.touch = make(map[int]lineData, s.newbuf.Height())
if s.curbuf.Width() != s.newbuf.Width() || s.curbuf.Height() != s.newbuf.Height() {
// Resize the old buffer to match the new buffer.
_, oldh := s.curbuf.Width(), s.curbuf.Height()
s.curbuf.Resize(s.newbuf.Width(), s.newbuf.Height())
// Sync new lines to old lines
for i := oldh - 1; i < s.newbuf.Height(); i++ {
copy(s.curbuf.Line(i), s.newbuf.Line(i))
}
}
s.updatePen(nil) // nil indicates a blank cell with no styles
// Do we have enough changes to justify toggling the cursor?
if s.buf.Len() > 1 && s.opts.ShowCursor && !s.cursorHidden && s.queuedText {
nb := new(bytes.Buffer)
nb.Grow(s.buf.Len() + len(ansi.HideCursor) + len(ansi.ShowCursor))
nb.WriteString(ansi.HideCursor)
nb.Write(s.buf.Bytes())
nb.WriteString(ansi.ShowCursor)
*s.buf = *nb
}
s.queuedText = false
}
// Close writes the final screen update and resets the screen.
func (s *Screen) Close() (err error) {
s.mu.Lock()
defer s.mu.Unlock()
s.render()
s.updatePen(nil)
// Go to the bottom of the screen
s.move(0, s.newbuf.Height()-1)
if s.altScreenMode {
s.buf.WriteString(ansi.ResetAltScreenSaveCursorMode)
s.altScreenMode = false
}
if s.cursorHidden {
s.buf.WriteString(ansi.ShowCursor)
s.cursorHidden = false
}
// Write the buffer
err = s.flush()
if err != nil {
return
}
s.reset()
return
}
// reset resets the screen to its initial state.
func (s *Screen) reset() {
s.scrollHeight = 0
s.cursorHidden = false
s.altScreenMode = false
s.touch = make(map[int]lineData, s.newbuf.Height())
if s.curbuf != nil {
s.curbuf.Clear()
}
if s.newbuf != nil {
s.newbuf.Clear()
}
s.buf.Reset()
s.tabs = DefaultTabStops(s.newbuf.Width())
s.oldhash, s.newhash = nil, nil
// We always disable HardTabs when termtype is "linux".
if strings.HasPrefix(s.opts.Term, "linux") {
s.opts.HardTabs = false
}
}
// Resize resizes the screen.
func (s *Screen) Resize(width, height int) bool {
oldw := s.newbuf.Width()
oldh := s.newbuf.Height()
if s.opts.AltScreen || width != oldw {
// We only clear the whole screen if the width changes. Adding/removing
// rows is handled by the [Screen.render] and [Screen.transformLine]
// methods.
s.clear = true
}
// Clear new columns and lines
if width > oldh {
s.ClearRect(Rect(max(oldw-1, 0), 0, width-oldw, height))
} else if width < oldw {
s.ClearRect(Rect(max(width-1, 0), 0, oldw-width, height))
}
if height > oldh {
s.ClearRect(Rect(0, max(oldh-1, 0), width, height-oldh))
} else if height < oldh {
s.ClearRect(Rect(0, max(height-1, 0), width, oldh-height))
}
s.mu.Lock()
s.newbuf.Resize(width, height)
s.tabs.Resize(width)
s.oldhash, s.newhash = nil, nil
s.scrollHeight = 0 // reset scroll lines
s.mu.Unlock()
return true
}
// MoveTo moves the cursor to the given position.
func (s *Screen) MoveTo(x, y int) {
s.mu.Lock()
s.move(x, y)
s.mu.Unlock()
}
// InsertAbove inserts string above the screen. The inserted string is not
// managed by the screen. This does nothing when alternate screen mode is
// enabled.
func (s *Screen) InsertAbove(str string) {
if s.opts.AltScreen {
return
}
s.mu.Lock()
for _, line := range strings.Split(str, "\n") {
s.queueAbove = append(s.queueAbove, s.method.Truncate(line, s.Width(), ""))
}
s.mu.Unlock()
}