Pygentic-AI/labs/Untitled.ipynb

103 lines
2.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "11b8593d-dea7-44e0-beee-c0c6ffea7d1a",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2b9388f3-c7e0-401d-8d0b-9ef43b78bd73",
"metadata": {},
"outputs": [],
"source": [
"work_dir = Path(__name__).resolve().parent.parent / \"src\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c0625c16-9e78-4525-aa84-2194480aaf0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"WindowsPath('C:/dev/python/interview_eval_project/highmark_agentic_ai/src')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"work_dir"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "481c534a-5120-457c-8f5e-3dbb2a5f1c3d",
"metadata": {},
"outputs": [],
"source": [
"backend = work_dir / \"backend\""
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "69c64859-7ad8-4e04-b974-ad54c8647bbf",
"metadata": {},
"outputs": [],
"source": [
"if backend.exists():\n",
" for folder in (\"core\", \"db\", \"server\", \"settings\", \"site\"):\n",
" directory = backend / folder\n",
" if not directory.exists():\n",
" directory.mkdir(exist_ok=True)\n",
" for file in (\"__init__\", \"core\", \"main\", \"utils\", \"consts\"):\n",
" file_path = directory / file\n",
" # file_path.touch(exist_ok=True)\n",
" file_path.unlink(missing_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50e9ff3d-f23a-402d-8bad-5f7f821d6b84",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Pydantic Agent AI",
"language": "python",
"name": "agentic_ai"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}