0
0
forked from toolshed/abra
decentral1se 1723025fbf
build: go 1.24
We were running behind and there were quite some deprecations to update.
This was mostly in the upstream copy/pasta package but seems quite
minimal.
2025-03-16 12:31:45 +01:00

525 lines
15 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package ansi
import (
"unicode/utf8"
"github.com/charmbracelet/x/ansi/parser"
"github.com/mattn/go-runewidth"
"github.com/rivo/uniseg"
)
// State represents the state of the ANSI escape sequence parser used by
// [DecodeSequence].
type State = byte
// ANSI escape sequence states used by [DecodeSequence].
const (
NormalState State = iota
PrefixState
ParamsState
IntermedState
EscapeState
StringState
)
// DecodeSequence decodes the first ANSI escape sequence or a printable
// grapheme from the given data. It returns the sequence slice, the number of
// bytes read, the cell width for each sequence, and the new state.
//
// The cell width will always be 0 for control and escape sequences, 1 for
// ASCII printable characters, and the number of cells other Unicode characters
// occupy. It uses the uniseg package to calculate the width of Unicode
// graphemes and characters. This means it will always do grapheme clustering
// (mode 2027).
//
// Passing a non-nil [*Parser] as the last argument will allow the decoder to
// collect sequence parameters, data, and commands. The parser cmd will have
// the packed command value that contains intermediate and prefix characters.
// In the case of a OSC sequence, the cmd will be the OSC command number. Use
// [Cmd] and [Param] types to unpack command intermediates and prefixes as well
// as parameters.
//
// Zero [Cmd] means the CSI, DCS, or ESC sequence is invalid. Moreover, checking the
// validity of other data sequences, OSC, DCS, etc, will require checking for
// the returned sequence terminator bytes such as ST (ESC \\) and BEL).
//
// We store the command byte in [Cmd] in the most significant byte, the
// prefix byte in the next byte, and the intermediate byte in the least
// significant byte. This is done to avoid using a struct to store the command
// and its intermediates and prefixes. The command byte is always the least
// significant byte i.e. [Cmd & 0xff]. Use the [Cmd] type to unpack the
// command, intermediate, and prefix bytes. Note that we only collect the last
// prefix character and intermediate byte.
//
// The [p.Params] slice will contain the parameters of the sequence. Any
// sub-parameter will have the [parser.HasMoreFlag] set. Use the [Param] type
// to unpack the parameters.
//
// Example:
//
// var state byte // the initial state is always zero [NormalState]
// p := NewParser(32, 1024) // create a new parser with a 32 params buffer and 1024 data buffer (optional)
// input := []byte("\x1b[31mHello, World!\x1b[0m")
// for len(input) > 0 {
// seq, width, n, newState := DecodeSequence(input, state, p)
// log.Printf("seq: %q, width: %d", seq, width)
// state = newState
// input = input[n:]
// }
//
// This function treats the text as a sequence of grapheme clusters.
func DecodeSequence[T string | []byte](b T, state byte, p *Parser) (seq T, width int, n int, newState byte) {
return decodeSequence(GraphemeWidth, b, state, p)
}
// DecodeSequenceWc decodes the first ANSI escape sequence or a printable
// grapheme from the given data. It returns the sequence slice, the number of
// bytes read, the cell width for each sequence, and the new state.
//
// The cell width will always be 0 for control and escape sequences, 1 for
// ASCII printable characters, and the number of cells other Unicode characters
// occupy. It uses the uniseg package to calculate the width of Unicode
// graphemes and characters. This means it will always do grapheme clustering
// (mode 2027).
//
// Passing a non-nil [*Parser] as the last argument will allow the decoder to
// collect sequence parameters, data, and commands. The parser cmd will have
// the packed command value that contains intermediate and prefix characters.
// In the case of a OSC sequence, the cmd will be the OSC command number. Use
// [Cmd] and [Param] types to unpack command intermediates and prefixes as well
// as parameters.
//
// Zero [Cmd] means the CSI, DCS, or ESC sequence is invalid. Moreover, checking the
// validity of other data sequences, OSC, DCS, etc, will require checking for
// the returned sequence terminator bytes such as ST (ESC \\) and BEL).
//
// We store the command byte in [Cmd] in the most significant byte, the
// prefix byte in the next byte, and the intermediate byte in the least
// significant byte. This is done to avoid using a struct to store the command
// and its intermediates and prefixes. The command byte is always the least
// significant byte i.e. [Cmd & 0xff]. Use the [Cmd] type to unpack the
// command, intermediate, and prefix bytes. Note that we only collect the last
// prefix character and intermediate byte.
//
// The [p.Params] slice will contain the parameters of the sequence. Any
// sub-parameter will have the [parser.HasMoreFlag] set. Use the [Param] type
// to unpack the parameters.
//
// Example:
//
// var state byte // the initial state is always zero [NormalState]
// p := NewParser(32, 1024) // create a new parser with a 32 params buffer and 1024 data buffer (optional)
// input := []byte("\x1b[31mHello, World!\x1b[0m")
// for len(input) > 0 {
// seq, width, n, newState := DecodeSequenceWc(input, state, p)
// log.Printf("seq: %q, width: %d", seq, width)
// state = newState
// input = input[n:]
// }
//
// This function treats the text as a sequence of wide characters and runes.
func DecodeSequenceWc[T string | []byte](b T, state byte, p *Parser) (seq T, width int, n int, newState byte) {
return decodeSequence(WcWidth, b, state, p)
}
func decodeSequence[T string | []byte](m Method, b T, state State, p *Parser) (seq T, width int, n int, newState byte) {
for i := 0; i < len(b); i++ {
c := b[i]
switch state {
case NormalState:
switch c {
case ESC:
if p != nil {
if len(p.params) > 0 {
p.params[0] = parser.MissingParam
}
p.cmd = 0
p.paramsLen = 0
p.dataLen = 0
}
state = EscapeState
continue
case CSI, DCS:
if p != nil {
if len(p.params) > 0 {
p.params[0] = parser.MissingParam
}
p.cmd = 0
p.paramsLen = 0
p.dataLen = 0
}
state = PrefixState
continue
case OSC, APC, SOS, PM:
if p != nil {
p.cmd = parser.MissingCommand
p.dataLen = 0
}
state = StringState
continue
}
if p != nil {
p.dataLen = 0
p.paramsLen = 0
p.cmd = 0
}
if c > US && c < DEL {
// ASCII printable characters
return b[i : i+1], 1, 1, NormalState
}
if c <= US || c == DEL || c < 0xC0 {
// C0 & C1 control characters & DEL
return b[i : i+1], 0, 1, NormalState
}
if utf8.RuneStart(c) {
seq, _, width, _ = FirstGraphemeCluster(b, -1)
if m == WcWidth {
width = runewidth.StringWidth(string(seq))
}
i += len(seq)
return b[:i], width, i, NormalState
}
// Invalid UTF-8 sequence
return b[:i], 0, i, NormalState
case PrefixState:
if c >= '<' && c <= '?' {
if p != nil {
// We only collect the last prefix character.
p.cmd &^= 0xff << parser.PrefixShift
p.cmd |= int(c) << parser.PrefixShift
}
break
}
state = ParamsState
fallthrough
case ParamsState:
if c >= '0' && c <= '9' {
if p != nil {
if p.params[p.paramsLen] == parser.MissingParam {
p.params[p.paramsLen] = 0
}
p.params[p.paramsLen] *= 10
p.params[p.paramsLen] += int(c - '0')
}
break
}
if c == ':' {
if p != nil {
p.params[p.paramsLen] |= parser.HasMoreFlag
}
}
if c == ';' || c == ':' {
if p != nil {
p.paramsLen++
if p.paramsLen < len(p.params) {
p.params[p.paramsLen] = parser.MissingParam
}
}
break
}
state = IntermedState
fallthrough
case IntermedState:
if c >= ' ' && c <= '/' {
if p != nil {
p.cmd &^= 0xff << parser.IntermedShift
p.cmd |= int(c) << parser.IntermedShift
}
break
}
if p != nil {
// Increment the last parameter
if p.paramsLen > 0 && p.paramsLen < len(p.params)-1 ||
p.paramsLen == 0 && len(p.params) > 0 && p.params[0] != parser.MissingParam {
p.paramsLen++
}
}
if c >= '@' && c <= '~' {
if p != nil {
p.cmd &^= 0xff
p.cmd |= int(c)
}
if HasDcsPrefix(b) {
// Continue to collect DCS data
if p != nil {
p.dataLen = 0
}
state = StringState
continue
}
return b[:i+1], 0, i + 1, NormalState
}
// Invalid CSI/DCS sequence
return b[:i], 0, i, NormalState
case EscapeState:
switch c {
case '[', 'P':
if p != nil {
if len(p.params) > 0 {
p.params[0] = parser.MissingParam
}
p.paramsLen = 0
p.cmd = 0
}
state = PrefixState
continue
case ']', 'X', '^', '_':
if p != nil {
p.cmd = parser.MissingCommand
p.dataLen = 0
}
state = StringState
continue
}
if c >= ' ' && c <= '/' {
if p != nil {
p.cmd &^= 0xff << parser.IntermedShift
p.cmd |= int(c) << parser.IntermedShift
}
continue
} else if c >= '0' && c <= '~' {
if p != nil {
p.cmd &^= 0xff
p.cmd |= int(c)
}
return b[:i+1], 0, i + 1, NormalState
}
// Invalid escape sequence
return b[:i], 0, i, NormalState
case StringState:
switch c {
case BEL:
if HasOscPrefix(b) {
parseOscCmd(p)
return b[:i+1], 0, i + 1, NormalState
}
case CAN, SUB:
if HasOscPrefix(b) {
// Ensure we parse the OSC command number
parseOscCmd(p)
}
// Cancel the sequence
return b[:i], 0, i, NormalState
case ST:
if HasOscPrefix(b) {
// Ensure we parse the OSC command number
parseOscCmd(p)
}
return b[:i+1], 0, i + 1, NormalState
case ESC:
if HasStPrefix(b[i:]) {
if HasOscPrefix(b) {
// Ensure we parse the OSC command number
parseOscCmd(p)
}
// End of string 7-bit (ST)
return b[:i+2], 0, i + 2, NormalState
}
// Otherwise, cancel the sequence
return b[:i], 0, i, NormalState
}
if p != nil && p.dataLen < len(p.data) {
p.data[p.dataLen] = c
p.dataLen++
// Parse the OSC command number
if c == ';' && HasOscPrefix(b) {
parseOscCmd(p)
}
}
}
}
return b, 0, len(b), state
}
func parseOscCmd(p *Parser) {
if p == nil || p.cmd != parser.MissingCommand {
return
}
for j := 0; j < p.dataLen; j++ {
d := p.data[j]
if d < '0' || d > '9' {
break
}
if p.cmd == parser.MissingCommand {
p.cmd = 0
}
p.cmd *= 10
p.cmd += int(d - '0')
}
}
// Equal returns true if the given byte slices are equal.
func Equal[T string | []byte](a, b T) bool {
return string(a) == string(b)
}
// HasPrefix returns true if the given byte slice has prefix.
func HasPrefix[T string | []byte](b, prefix T) bool {
return len(b) >= len(prefix) && Equal(b[0:len(prefix)], prefix)
}
// HasSuffix returns true if the given byte slice has suffix.
func HasSuffix[T string | []byte](b, suffix T) bool {
return len(b) >= len(suffix) && Equal(b[len(b)-len(suffix):], suffix)
}
// HasCsiPrefix returns true if the given byte slice has a CSI prefix.
func HasCsiPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == CSI) ||
(len(b) > 1 && b[0] == ESC && b[1] == '[')
}
// HasOscPrefix returns true if the given byte slice has an OSC prefix.
func HasOscPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == OSC) ||
(len(b) > 1 && b[0] == ESC && b[1] == ']')
}
// HasApcPrefix returns true if the given byte slice has an APC prefix.
func HasApcPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == APC) ||
(len(b) > 1 && b[0] == ESC && b[1] == '_')
}
// HasDcsPrefix returns true if the given byte slice has a DCS prefix.
func HasDcsPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == DCS) ||
(len(b) > 1 && b[0] == ESC && b[1] == 'P')
}
// HasSosPrefix returns true if the given byte slice has a SOS prefix.
func HasSosPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == SOS) ||
(len(b) > 1 && b[0] == ESC && b[1] == 'X')
}
// HasPmPrefix returns true if the given byte slice has a PM prefix.
func HasPmPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == PM) ||
(len(b) > 1 && b[0] == ESC && b[1] == '^')
}
// HasStPrefix returns true if the given byte slice has a ST prefix.
func HasStPrefix[T string | []byte](b T) bool {
return (len(b) > 0 && b[0] == ST) ||
(len(b) > 1 && b[0] == ESC && b[1] == '\\')
}
// HasEscPrefix returns true if the given byte slice has an ESC prefix.
func HasEscPrefix[T string | []byte](b T) bool {
return len(b) > 0 && b[0] == ESC
}
// FirstGraphemeCluster returns the first grapheme cluster in the given string or byte slice.
// This is a syntactic sugar function that wraps
// uniseg.FirstGraphemeClusterInString and uniseg.FirstGraphemeCluster.
func FirstGraphemeCluster[T string | []byte](b T, state int) (T, T, int, int) {
switch b := any(b).(type) {
case string:
cluster, rest, width, newState := uniseg.FirstGraphemeClusterInString(b, state)
return T(cluster), T(rest), width, newState
case []byte:
cluster, rest, width, newState := uniseg.FirstGraphemeCluster(b, state)
return T(cluster), T(rest), width, newState
}
panic("unreachable")
}
// Cmd represents a sequence command. This is used to pack/unpack a sequence
// command with its intermediate and prefix characters. Those are commonly
// found in CSI and DCS sequences.
type Cmd int
// Prefix returns the unpacked prefix byte of the CSI sequence.
// This is always gonna be one of the following '<' '=' '>' '?' and in the
// range of 0x3C-0x3F.
// Zero is returned if the sequence does not have a prefix.
func (c Cmd) Prefix() byte {
return byte(parser.Prefix(int(c)))
}
// Intermediate returns the unpacked intermediate byte of the CSI sequence.
// An intermediate byte is in the range of 0x20-0x2F. This includes these
// characters from ' ', '!', '"', '#', '$', '%', '&', ”', '(', ')', '*', '+',
// ',', '-', '.', '/'.
// Zero is returned if the sequence does not have an intermediate byte.
func (c Cmd) Intermediate() byte {
return byte(parser.Intermediate(int(c)))
}
// Final returns the unpacked command byte of the CSI sequence.
func (c Cmd) Final() byte {
return byte(parser.Command(int(c)))
}
// Command packs a command with the given prefix, intermediate, and final. A
// zero byte means the sequence does not have a prefix or intermediate.
//
// Prefixes are in the range of 0x3C-0x3F that is one of `<=>?`.
//
// Intermediates are in the range of 0x20-0x2F that is anything in
// `!"#$%&'()*+,-./`.
//
// Final bytes are in the range of 0x40-0x7E that is anything in the range
// `@AZ[\]^_`az{|}~`.
func Command(prefix, inter, final byte) (c int) {
c = int(final)
c |= int(prefix) << parser.PrefixShift
c |= int(inter) << parser.IntermedShift
return
}
// Param represents a sequence parameter. Sequence parameters with
// sub-parameters are packed with the HasMoreFlag set. This is used to unpack
// the parameters from a CSI and DCS sequences.
type Param int
// Param returns the unpacked parameter at the given index.
// It returns the default value if the parameter is missing.
func (s Param) Param(def int) int {
p := int(s) & parser.ParamMask
if p == parser.MissingParam {
return def
}
return p
}
// HasMore unpacks the HasMoreFlag from the parameter.
func (s Param) HasMore() bool {
return s&parser.HasMoreFlag != 0
}
// Parameter packs an escape code parameter with the given parameter and
// whether this parameter has following sub-parameters.
func Parameter(p int, hasMore bool) (s int) {
s = p & parser.ParamMask
if hasMore {
s |= parser.HasMoreFlag
}
return
}