Files
Alexey Grigorev d8065cef73 dataproc
2022-03-30 18:12:56 +00:00

112 lines
2.5 KiB
Python

#!/usr/bin/env python
# coding: utf-8
import argparse
import pyspark
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
parser = argparse.ArgumentParser()
parser.add_argument('--input_green', required=True)
parser.add_argument('--input_yellow', required=True)
parser.add_argument('--output', required=True)
args = parser.parse_args()
input_green = args.input_green
input_yellow = args.input_yellow
output = args.output
spark = SparkSession.builder \
.appName('test') \
.getOrCreate()
df_green = spark.read.parquet(input_green)
df_green = df_green \
.withColumnRenamed('lpep_pickup_datetime', 'pickup_datetime') \
.withColumnRenamed('lpep_dropoff_datetime', 'dropoff_datetime')
df_yellow = spark.read.parquet(input_yellow)
df_yellow = df_yellow \
.withColumnRenamed('tpep_pickup_datetime', 'pickup_datetime') \
.withColumnRenamed('tpep_dropoff_datetime', 'dropoff_datetime')
common_colums = [
'VendorID',
'pickup_datetime',
'dropoff_datetime',
'store_and_fwd_flag',
'RatecodeID',
'PULocationID',
'DOLocationID',
'passenger_count',
'trip_distance',
'fare_amount',
'extra',
'mta_tax',
'tip_amount',
'tolls_amount',
'improvement_surcharge',
'total_amount',
'payment_type',
'congestion_surcharge'
]
df_green_sel = df_green \
.select(common_colums) \
.withColumn('service_type', F.lit('green'))
df_yellow_sel = df_yellow \
.select(common_colums) \
.withColumn('service_type', F.lit('yellow'))
df_trips_data = df_green_sel.unionAll(df_yellow_sel)
df_trips_data.registerTempTable('trips_data')
df_result = spark.sql("""
SELECT
-- Reveneue grouping
PULocationID AS revenue_zone,
date_trunc('month', pickup_datetime) AS revenue_month,
service_type,
-- Revenue calculation
SUM(fare_amount) AS revenue_monthly_fare,
SUM(extra) AS revenue_monthly_extra,
SUM(mta_tax) AS revenue_monthly_mta_tax,
SUM(tip_amount) AS revenue_monthly_tip_amount,
SUM(tolls_amount) AS revenue_monthly_tolls_amount,
SUM(improvement_surcharge) AS revenue_monthly_improvement_surcharge,
SUM(total_amount) AS revenue_monthly_total_amount,
SUM(congestion_surcharge) AS revenue_monthly_congestion_surcharge,
-- Additional calculations
AVG(passenger_count) AS avg_montly_passenger_count,
AVG(trip_distance) AS avg_montly_trip_distance
FROM
trips_data
GROUP BY
1, 2, 3
""")
df_result.coalesce(1) \
.write.parquet(output, mode='overwrite')