chore: vendor

This commit is contained in:
2024-08-04 11:06:58 +02:00
parent 2a5985e44e
commit 04aec8232f
3557 changed files with 981078 additions and 1 deletions

View File

@ -0,0 +1,60 @@
/*
*
* Copyright 2018 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Package dns implements a dns resolver to be installed as the default resolver
// in grpc.
package dns
import (
"time"
"google.golang.org/grpc/internal/resolver/dns"
"google.golang.org/grpc/resolver"
)
// SetResolvingTimeout sets the maximum duration for DNS resolution requests.
//
// This function affects the global timeout used by all channels using the DNS
// name resolver scheme.
//
// It must be called only at application startup, before any gRPC calls are
// made. Modifying this value after initialization is not thread-safe.
//
// The default value is 30 seconds. Setting the timeout too low may result in
// premature timeouts during resolution, while setting it too high may lead to
// unnecessary delays in service discovery. Choose a value appropriate for your
// specific needs and network environment.
func SetResolvingTimeout(timeout time.Duration) {
dns.ResolvingTimeout = timeout
}
// NewBuilder creates a dnsBuilder which is used to factory DNS resolvers.
//
// Deprecated: import grpc and use resolver.Get("dns") instead.
func NewBuilder() resolver.Builder {
return dns.NewBuilder()
}
// SetMinResolutionInterval sets the default minimum interval at which DNS
// re-resolutions are allowed. This helps to prevent excessive re-resolution.
//
// It must be called only at application startup, before any gRPC calls are
// made. Modifying this value after initialization is not thread-safe.
func SetMinResolutionInterval(d time.Duration) {
dns.MinResolutionInterval = d
}

251
vendor/google.golang.org/grpc/resolver/map.go generated vendored Normal file
View File

@ -0,0 +1,251 @@
/*
*
* Copyright 2021 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package resolver
type addressMapEntry struct {
addr Address
value any
}
// AddressMap is a map of addresses to arbitrary values taking into account
// Attributes. BalancerAttributes are ignored, as are Metadata and Type.
// Multiple accesses may not be performed concurrently. Must be created via
// NewAddressMap; do not construct directly.
type AddressMap struct {
// The underlying map is keyed by an Address with fields that we don't care
// about being set to their zero values. The only fields that we care about
// are `Addr`, `ServerName` and `Attributes`. Since we need to be able to
// distinguish between addresses with same `Addr` and `ServerName`, but
// different `Attributes`, we cannot store the `Attributes` in the map key.
//
// The comparison operation for structs work as follows:
// Struct values are comparable if all their fields are comparable. Two
// struct values are equal if their corresponding non-blank fields are equal.
//
// The value type of the map contains a slice of addresses which match the key
// in their `Addr` and `ServerName` fields and contain the corresponding value
// associated with them.
m map[Address]addressMapEntryList
}
func toMapKey(addr *Address) Address {
return Address{Addr: addr.Addr, ServerName: addr.ServerName}
}
type addressMapEntryList []*addressMapEntry
// NewAddressMap creates a new AddressMap.
func NewAddressMap() *AddressMap {
return &AddressMap{m: make(map[Address]addressMapEntryList)}
}
// find returns the index of addr in the addressMapEntry slice, or -1 if not
// present.
func (l addressMapEntryList) find(addr Address) int {
for i, entry := range l {
// Attributes are the only thing to match on here, since `Addr` and
// `ServerName` are already equal.
if entry.addr.Attributes.Equal(addr.Attributes) {
return i
}
}
return -1
}
// Get returns the value for the address in the map, if present.
func (a *AddressMap) Get(addr Address) (value any, ok bool) {
addrKey := toMapKey(&addr)
entryList := a.m[addrKey]
if entry := entryList.find(addr); entry != -1 {
return entryList[entry].value, true
}
return nil, false
}
// Set updates or adds the value to the address in the map.
func (a *AddressMap) Set(addr Address, value any) {
addrKey := toMapKey(&addr)
entryList := a.m[addrKey]
if entry := entryList.find(addr); entry != -1 {
entryList[entry].value = value
return
}
a.m[addrKey] = append(entryList, &addressMapEntry{addr: addr, value: value})
}
// Delete removes addr from the map.
func (a *AddressMap) Delete(addr Address) {
addrKey := toMapKey(&addr)
entryList := a.m[addrKey]
entry := entryList.find(addr)
if entry == -1 {
return
}
if len(entryList) == 1 {
entryList = nil
} else {
copy(entryList[entry:], entryList[entry+1:])
entryList = entryList[:len(entryList)-1]
}
a.m[addrKey] = entryList
}
// Len returns the number of entries in the map.
func (a *AddressMap) Len() int {
ret := 0
for _, entryList := range a.m {
ret += len(entryList)
}
return ret
}
// Keys returns a slice of all current map keys.
func (a *AddressMap) Keys() []Address {
ret := make([]Address, 0, a.Len())
for _, entryList := range a.m {
for _, entry := range entryList {
ret = append(ret, entry.addr)
}
}
return ret
}
// Values returns a slice of all current map values.
func (a *AddressMap) Values() []any {
ret := make([]any, 0, a.Len())
for _, entryList := range a.m {
for _, entry := range entryList {
ret = append(ret, entry.value)
}
}
return ret
}
type endpointNode struct {
addrs map[string]struct{}
}
// Equal returns whether the unordered set of addrs are the same between the
// endpoint nodes.
func (en *endpointNode) Equal(en2 *endpointNode) bool {
if len(en.addrs) != len(en2.addrs) {
return false
}
for addr := range en.addrs {
if _, ok := en2.addrs[addr]; !ok {
return false
}
}
return true
}
func toEndpointNode(endpoint Endpoint) endpointNode {
en := make(map[string]struct{})
for _, addr := range endpoint.Addresses {
en[addr.Addr] = struct{}{}
}
return endpointNode{
addrs: en,
}
}
// EndpointMap is a map of endpoints to arbitrary values keyed on only the
// unordered set of address strings within an endpoint. This map is not thread
// safe, thus it is unsafe to access concurrently. Must be created via
// NewEndpointMap; do not construct directly.
type EndpointMap struct {
endpoints map[*endpointNode]any
}
// NewEndpointMap creates a new EndpointMap.
func NewEndpointMap() *EndpointMap {
return &EndpointMap{
endpoints: make(map[*endpointNode]any),
}
}
// Get returns the value for the address in the map, if present.
func (em *EndpointMap) Get(e Endpoint) (value any, ok bool) {
en := toEndpointNode(e)
if endpoint := em.find(en); endpoint != nil {
return em.endpoints[endpoint], true
}
return nil, false
}
// Set updates or adds the value to the address in the map.
func (em *EndpointMap) Set(e Endpoint, value any) {
en := toEndpointNode(e)
if endpoint := em.find(en); endpoint != nil {
em.endpoints[endpoint] = value
return
}
em.endpoints[&en] = value
}
// Len returns the number of entries in the map.
func (em *EndpointMap) Len() int {
return len(em.endpoints)
}
// Keys returns a slice of all current map keys, as endpoints specifying the
// addresses present in the endpoint keys, in which uniqueness is determined by
// the unordered set of addresses. Thus, endpoint information returned is not
// the full endpoint data (drops duplicated addresses and attributes) but can be
// used for EndpointMap accesses.
func (em *EndpointMap) Keys() []Endpoint {
ret := make([]Endpoint, 0, len(em.endpoints))
for en := range em.endpoints {
var endpoint Endpoint
for addr := range en.addrs {
endpoint.Addresses = append(endpoint.Addresses, Address{Addr: addr})
}
ret = append(ret, endpoint)
}
return ret
}
// Values returns a slice of all current map values.
func (em *EndpointMap) Values() []any {
ret := make([]any, 0, len(em.endpoints))
for _, val := range em.endpoints {
ret = append(ret, val)
}
return ret
}
// find returns a pointer to the endpoint node in em if the endpoint node is
// already present. If not found, nil is returned. The comparisons are done on
// the unordered set of addresses within an endpoint.
func (em EndpointMap) find(e endpointNode) *endpointNode {
for endpoint := range em.endpoints {
if e.Equal(endpoint) {
return endpoint
}
}
return nil
}
// Delete removes the specified endpoint from the map.
func (em *EndpointMap) Delete(e Endpoint) {
en := toEndpointNode(e)
if entry := em.find(en); entry != nil {
delete(em.endpoints, entry)
}
}

332
vendor/google.golang.org/grpc/resolver/resolver.go generated vendored Normal file
View File

@ -0,0 +1,332 @@
/*
*
* Copyright 2017 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Package resolver defines APIs for name resolution in gRPC.
// All APIs in this package are experimental.
package resolver
import (
"context"
"fmt"
"net"
"net/url"
"strings"
"google.golang.org/grpc/attributes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/internal"
"google.golang.org/grpc/serviceconfig"
)
var (
// m is a map from scheme to resolver builder.
m = make(map[string]Builder)
// defaultScheme is the default scheme to use.
defaultScheme = "passthrough"
)
// TODO(bar) install dns resolver in init(){}.
// Register registers the resolver builder to the resolver map. b.Scheme will
// be used as the scheme registered with this builder. The registry is case
// sensitive, and schemes should not contain any uppercase characters.
//
// NOTE: this function must only be called during initialization time (i.e. in
// an init() function), and is not thread-safe. If multiple Resolvers are
// registered with the same name, the one registered last will take effect.
func Register(b Builder) {
m[b.Scheme()] = b
}
// Get returns the resolver builder registered with the given scheme.
//
// If no builder is register with the scheme, nil will be returned.
func Get(scheme string) Builder {
if b, ok := m[scheme]; ok {
return b
}
return nil
}
// SetDefaultScheme sets the default scheme that will be used. The default
// scheme is initially set to "passthrough".
//
// NOTE: this function must only be called during initialization time (i.e. in
// an init() function), and is not thread-safe. The scheme set last overrides
// previously set values.
func SetDefaultScheme(scheme string) {
defaultScheme = scheme
internal.UserSetDefaultScheme = true
}
// GetDefaultScheme gets the default scheme that will be used by grpc.Dial. If
// SetDefaultScheme is never called, the default scheme used by grpc.NewClient is "dns" instead.
func GetDefaultScheme() string {
return defaultScheme
}
// Address represents a server the client connects to.
//
// # Experimental
//
// Notice: This type is EXPERIMENTAL and may be changed or removed in a
// later release.
type Address struct {
// Addr is the server address on which a connection will be established.
Addr string
// ServerName is the name of this address.
// If non-empty, the ServerName is used as the transport certification authority for
// the address, instead of the hostname from the Dial target string. In most cases,
// this should not be set.
//
// WARNING: ServerName must only be populated with trusted values. It
// is insecure to populate it with data from untrusted inputs since untrusted
// values could be used to bypass the authority checks performed by TLS.
ServerName string
// Attributes contains arbitrary data about this address intended for
// consumption by the SubConn.
Attributes *attributes.Attributes
// BalancerAttributes contains arbitrary data about this address intended
// for consumption by the LB policy. These attributes do not affect SubConn
// creation, connection establishment, handshaking, etc.
//
// Deprecated: when an Address is inside an Endpoint, this field should not
// be used, and it will eventually be removed entirely.
BalancerAttributes *attributes.Attributes
// Metadata is the information associated with Addr, which may be used
// to make load balancing decision.
//
// Deprecated: use Attributes instead.
Metadata any
}
// Equal returns whether a and o are identical. Metadata is compared directly,
// not with any recursive introspection.
//
// This method compares all fields of the address. When used to tell apart
// addresses during subchannel creation or connection establishment, it might be
// more appropriate for the caller to implement custom equality logic.
func (a Address) Equal(o Address) bool {
return a.Addr == o.Addr && a.ServerName == o.ServerName &&
a.Attributes.Equal(o.Attributes) &&
a.BalancerAttributes.Equal(o.BalancerAttributes) &&
a.Metadata == o.Metadata
}
// String returns JSON formatted string representation of the address.
func (a Address) String() string {
var sb strings.Builder
sb.WriteString(fmt.Sprintf("{Addr: %q, ", a.Addr))
sb.WriteString(fmt.Sprintf("ServerName: %q, ", a.ServerName))
if a.Attributes != nil {
sb.WriteString(fmt.Sprintf("Attributes: %v, ", a.Attributes.String()))
}
if a.BalancerAttributes != nil {
sb.WriteString(fmt.Sprintf("BalancerAttributes: %v", a.BalancerAttributes.String()))
}
sb.WriteString("}")
return sb.String()
}
// BuildOptions includes additional information for the builder to create
// the resolver.
type BuildOptions struct {
// DisableServiceConfig indicates whether a resolver implementation should
// fetch service config data.
DisableServiceConfig bool
// DialCreds is the transport credentials used by the ClientConn for
// communicating with the target gRPC service (set via
// WithTransportCredentials). In cases where a name resolution service
// requires the same credentials, the resolver may use this field. In most
// cases though, it is not appropriate, and this field may be ignored.
DialCreds credentials.TransportCredentials
// CredsBundle is the credentials bundle used by the ClientConn for
// communicating with the target gRPC service (set via
// WithCredentialsBundle). In cases where a name resolution service
// requires the same credentials, the resolver may use this field. In most
// cases though, it is not appropriate, and this field may be ignored.
CredsBundle credentials.Bundle
// Dialer is the custom dialer used by the ClientConn for dialling the
// target gRPC service (set via WithDialer). In cases where a name
// resolution service requires the same dialer, the resolver may use this
// field. In most cases though, it is not appropriate, and this field may
// be ignored.
Dialer func(context.Context, string) (net.Conn, error)
// Authority is the effective authority of the clientconn for which the
// resolver is built.
Authority string
}
// An Endpoint is one network endpoint, or server, which may have multiple
// addresses with which it can be accessed.
type Endpoint struct {
// Addresses contains a list of addresses used to access this endpoint.
Addresses []Address
// Attributes contains arbitrary data about this endpoint intended for
// consumption by the LB policy.
Attributes *attributes.Attributes
}
// State contains the current Resolver state relevant to the ClientConn.
type State struct {
// Addresses is the latest set of resolved addresses for the target.
//
// If a resolver sets Addresses but does not set Endpoints, one Endpoint
// will be created for each Address before the State is passed to the LB
// policy. The BalancerAttributes of each entry in Addresses will be set
// in Endpoints.Attributes, and be cleared in the Endpoint's Address's
// BalancerAttributes.
//
// Soon, Addresses will be deprecated and replaced fully by Endpoints.
Addresses []Address
// Endpoints is the latest set of resolved endpoints for the target.
//
// If a resolver produces a State containing Endpoints but not Addresses,
// it must take care to ensure the LB policies it selects will support
// Endpoints.
Endpoints []Endpoint
// ServiceConfig contains the result from parsing the latest service
// config. If it is nil, it indicates no service config is present or the
// resolver does not provide service configs.
ServiceConfig *serviceconfig.ParseResult
// Attributes contains arbitrary data about the resolver intended for
// consumption by the load balancing policy.
Attributes *attributes.Attributes
}
// ClientConn contains the callbacks for resolver to notify any updates
// to the gRPC ClientConn.
//
// This interface is to be implemented by gRPC. Users should not need a
// brand new implementation of this interface. For the situations like
// testing, the new implementation should embed this interface. This allows
// gRPC to add new methods to this interface.
type ClientConn interface {
// UpdateState updates the state of the ClientConn appropriately.
//
// If an error is returned, the resolver should try to resolve the
// target again. The resolver should use a backoff timer to prevent
// overloading the server with requests. If a resolver is certain that
// reresolving will not change the result, e.g. because it is
// a watch-based resolver, returned errors can be ignored.
//
// If the resolved State is the same as the last reported one, calling
// UpdateState can be omitted.
UpdateState(State) error
// ReportError notifies the ClientConn that the Resolver encountered an
// error. The ClientConn will notify the load balancer and begin calling
// ResolveNow on the Resolver with exponential backoff.
ReportError(error)
// NewAddress is called by resolver to notify ClientConn a new list
// of resolved addresses.
// The address list should be the complete list of resolved addresses.
//
// Deprecated: Use UpdateState instead.
NewAddress(addresses []Address)
// ParseServiceConfig parses the provided service config and returns an
// object that provides the parsed config.
ParseServiceConfig(serviceConfigJSON string) *serviceconfig.ParseResult
}
// Target represents a target for gRPC, as specified in:
// https://github.com/grpc/grpc/blob/master/doc/naming.md.
// It is parsed from the target string that gets passed into Dial or DialContext
// by the user. And gRPC passes it to the resolver and the balancer.
//
// If the target follows the naming spec, and the parsed scheme is registered
// with gRPC, we will parse the target string according to the spec. If the
// target does not contain a scheme or if the parsed scheme is not registered
// (i.e. no corresponding resolver available to resolve the endpoint), we will
// apply the default scheme, and will attempt to reparse it.
type Target struct {
// URL contains the parsed dial target with an optional default scheme added
// to it if the original dial target contained no scheme or contained an
// unregistered scheme. Any query params specified in the original dial
// target can be accessed from here.
URL url.URL
}
// Endpoint retrieves endpoint without leading "/" from either `URL.Path`
// or `URL.Opaque`. The latter is used when the former is empty.
func (t Target) Endpoint() string {
endpoint := t.URL.Path
if endpoint == "" {
endpoint = t.URL.Opaque
}
// For targets of the form "[scheme]://[authority]/endpoint, the endpoint
// value returned from url.Parse() contains a leading "/". Although this is
// in accordance with RFC 3986, we do not want to break existing resolver
// implementations which expect the endpoint without the leading "/". So, we
// end up stripping the leading "/" here. But this will result in an
// incorrect parsing for something like "unix:///path/to/socket". Since we
// own the "unix" resolver, we can workaround in the unix resolver by using
// the `URL` field.
return strings.TrimPrefix(endpoint, "/")
}
// String returns the canonical string representation of Target.
func (t Target) String() string {
return t.URL.Scheme + "://" + t.URL.Host + "/" + t.Endpoint()
}
// Builder creates a resolver that will be used to watch name resolution updates.
type Builder interface {
// Build creates a new resolver for the given target.
//
// gRPC dial calls Build synchronously, and fails if the returned error is
// not nil.
Build(target Target, cc ClientConn, opts BuildOptions) (Resolver, error)
// Scheme returns the scheme supported by this resolver. Scheme is defined
// at https://github.com/grpc/grpc/blob/master/doc/naming.md. The returned
// string should not contain uppercase characters, as they will not match
// the parsed target's scheme as defined in RFC 3986.
Scheme() string
}
// ResolveNowOptions includes additional information for ResolveNow.
type ResolveNowOptions struct{}
// Resolver watches for the updates on the specified target.
// Updates include address updates and service config updates.
type Resolver interface {
// ResolveNow will be called by gRPC to try to resolve the target name
// again. It's just a hint, resolver can ignore this if it's not necessary.
//
// It could be called multiple times concurrently.
ResolveNow(ResolveNowOptions)
// Close closes the resolver.
Close()
}
// AuthorityOverrider is implemented by Builders that wish to override the
// default authority for the ClientConn.
// By default, the authority used is target.Endpoint().
type AuthorityOverrider interface {
// OverrideAuthority returns the authority to use for a ClientConn with the
// given target. The implementation must generate it without blocking,
// typically in line, and must keep it unchanged.
OverrideAuthority(Target) string
}