672 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			672 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2017, The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Package cmp determines equality of values.
 | |
| //
 | |
| // This package is intended to be a more powerful and safer alternative to
 | |
| // [reflect.DeepEqual] for comparing whether two values are semantically equal.
 | |
| // It is intended to only be used in tests, as performance is not a goal and
 | |
| // it may panic if it cannot compare the values. Its propensity towards
 | |
| // panicking means that its unsuitable for production environments where a
 | |
| // spurious panic may be fatal.
 | |
| //
 | |
| // The primary features of cmp are:
 | |
| //
 | |
| //   - When the default behavior of equality does not suit the test's needs,
 | |
| //     custom equality functions can override the equality operation.
 | |
| //     For example, an equality function may report floats as equal so long as
 | |
| //     they are within some tolerance of each other.
 | |
| //
 | |
| //   - Types with an Equal method (e.g., [time.Time.Equal]) may use that method
 | |
| //     to determine equality. This allows package authors to determine
 | |
| //     the equality operation for the types that they define.
 | |
| //
 | |
| //   - If no custom equality functions are used and no Equal method is defined,
 | |
| //     equality is determined by recursively comparing the primitive kinds on
 | |
| //     both values, much like [reflect.DeepEqual]. Unlike [reflect.DeepEqual],
 | |
| //     unexported fields are not compared by default; they result in panics
 | |
| //     unless suppressed by using an [Ignore] option
 | |
| //     (see [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported])
 | |
| //     or explicitly compared using the [Exporter] option.
 | |
| package cmp
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"reflect"
 | |
| 	"strings"
 | |
| 
 | |
| 	"github.com/google/go-cmp/cmp/internal/diff"
 | |
| 	"github.com/google/go-cmp/cmp/internal/function"
 | |
| 	"github.com/google/go-cmp/cmp/internal/value"
 | |
| )
 | |
| 
 | |
| // TODO(≥go1.18): Use any instead of interface{}.
 | |
| 
 | |
| // Equal reports whether x and y are equal by recursively applying the
 | |
| // following rules in the given order to x and y and all of their sub-values:
 | |
| //
 | |
| //   - Let S be the set of all [Ignore], [Transformer], and [Comparer] options that
 | |
| //     remain after applying all path filters, value filters, and type filters.
 | |
| //     If at least one [Ignore] exists in S, then the comparison is ignored.
 | |
| //     If the number of [Transformer] and [Comparer] options in S is non-zero,
 | |
| //     then Equal panics because it is ambiguous which option to use.
 | |
| //     If S contains a single [Transformer], then use that to transform
 | |
| //     the current values and recursively call Equal on the output values.
 | |
| //     If S contains a single [Comparer], then use that to compare the current values.
 | |
| //     Otherwise, evaluation proceeds to the next rule.
 | |
| //
 | |
| //   - If the values have an Equal method of the form "(T) Equal(T) bool" or
 | |
| //     "(T) Equal(I) bool" where T is assignable to I, then use the result of
 | |
| //     x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
 | |
| //     evaluation proceeds to the next rule.
 | |
| //
 | |
| //   - Lastly, try to compare x and y based on their basic kinds.
 | |
| //     Simple kinds like booleans, integers, floats, complex numbers, strings,
 | |
| //     and channels are compared using the equivalent of the == operator in Go.
 | |
| //     Functions are only equal if they are both nil, otherwise they are unequal.
 | |
| //
 | |
| // Structs are equal if recursively calling Equal on all fields report equal.
 | |
| // If a struct contains unexported fields, Equal panics unless an [Ignore] option
 | |
| // (e.g., [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported]) ignores that field
 | |
| // or the [Exporter] option explicitly permits comparing the unexported field.
 | |
| //
 | |
| // Slices are equal if they are both nil or both non-nil, where recursively
 | |
| // calling Equal on all non-ignored slice or array elements report equal.
 | |
| // Empty non-nil slices and nil slices are not equal; to equate empty slices,
 | |
| // consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty].
 | |
| //
 | |
| // Maps are equal if they are both nil or both non-nil, where recursively
 | |
| // calling Equal on all non-ignored map entries report equal.
 | |
| // Map keys are equal according to the == operator.
 | |
| // To use custom comparisons for map keys, consider using
 | |
| // [github.com/google/go-cmp/cmp/cmpopts.SortMaps].
 | |
| // Empty non-nil maps and nil maps are not equal; to equate empty maps,
 | |
| // consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty].
 | |
| //
 | |
| // Pointers and interfaces are equal if they are both nil or both non-nil,
 | |
| // where they have the same underlying concrete type and recursively
 | |
| // calling Equal on the underlying values reports equal.
 | |
| //
 | |
| // Before recursing into a pointer, slice element, or map, the current path
 | |
| // is checked to detect whether the address has already been visited.
 | |
| // If there is a cycle, then the pointed at values are considered equal
 | |
| // only if both addresses were previously visited in the same path step.
 | |
| func Equal(x, y interface{}, opts ...Option) bool {
 | |
| 	s := newState(opts)
 | |
| 	s.compareAny(rootStep(x, y))
 | |
| 	return s.result.Equal()
 | |
| }
 | |
| 
 | |
| // Diff returns a human-readable report of the differences between two values:
 | |
| // y - x. It returns an empty string if and only if Equal returns true for the
 | |
| // same input values and options.
 | |
| //
 | |
| // The output is displayed as a literal in pseudo-Go syntax.
 | |
| // At the start of each line, a "-" prefix indicates an element removed from x,
 | |
| // a "+" prefix to indicates an element added from y, and the lack of a prefix
 | |
| // indicates an element common to both x and y. If possible, the output
 | |
| // uses fmt.Stringer.String or error.Error methods to produce more humanly
 | |
| // readable outputs. In such cases, the string is prefixed with either an
 | |
| // 's' or 'e' character, respectively, to indicate that the method was called.
 | |
| //
 | |
| // Do not depend on this output being stable. If you need the ability to
 | |
| // programmatically interpret the difference, consider using a custom Reporter.
 | |
| func Diff(x, y interface{}, opts ...Option) string {
 | |
| 	s := newState(opts)
 | |
| 
 | |
| 	// Optimization: If there are no other reporters, we can optimize for the
 | |
| 	// common case where the result is equal (and thus no reported difference).
 | |
| 	// This avoids the expensive construction of a difference tree.
 | |
| 	if len(s.reporters) == 0 {
 | |
| 		s.compareAny(rootStep(x, y))
 | |
| 		if s.result.Equal() {
 | |
| 			return ""
 | |
| 		}
 | |
| 		s.result = diff.Result{} // Reset results
 | |
| 	}
 | |
| 
 | |
| 	r := new(defaultReporter)
 | |
| 	s.reporters = append(s.reporters, reporter{r})
 | |
| 	s.compareAny(rootStep(x, y))
 | |
| 	d := r.String()
 | |
| 	if (d == "") != s.result.Equal() {
 | |
| 		panic("inconsistent difference and equality results")
 | |
| 	}
 | |
| 	return d
 | |
| }
 | |
| 
 | |
| // rootStep constructs the first path step. If x and y have differing types,
 | |
| // then they are stored within an empty interface type.
 | |
| func rootStep(x, y interface{}) PathStep {
 | |
| 	vx := reflect.ValueOf(x)
 | |
| 	vy := reflect.ValueOf(y)
 | |
| 
 | |
| 	// If the inputs are different types, auto-wrap them in an empty interface
 | |
| 	// so that they have the same parent type.
 | |
| 	var t reflect.Type
 | |
| 	if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
 | |
| 		t = anyType
 | |
| 		if vx.IsValid() {
 | |
| 			vvx := reflect.New(t).Elem()
 | |
| 			vvx.Set(vx)
 | |
| 			vx = vvx
 | |
| 		}
 | |
| 		if vy.IsValid() {
 | |
| 			vvy := reflect.New(t).Elem()
 | |
| 			vvy.Set(vy)
 | |
| 			vy = vvy
 | |
| 		}
 | |
| 	} else {
 | |
| 		t = vx.Type()
 | |
| 	}
 | |
| 
 | |
| 	return &pathStep{t, vx, vy}
 | |
| }
 | |
| 
 | |
| type state struct {
 | |
| 	// These fields represent the "comparison state".
 | |
| 	// Calling statelessCompare must not result in observable changes to these.
 | |
| 	result    diff.Result // The current result of comparison
 | |
| 	curPath   Path        // The current path in the value tree
 | |
| 	curPtrs   pointerPath // The current set of visited pointers
 | |
| 	reporters []reporter  // Optional reporters
 | |
| 
 | |
| 	// recChecker checks for infinite cycles applying the same set of
 | |
| 	// transformers upon the output of itself.
 | |
| 	recChecker recChecker
 | |
| 
 | |
| 	// dynChecker triggers pseudo-random checks for option correctness.
 | |
| 	// It is safe for statelessCompare to mutate this value.
 | |
| 	dynChecker dynChecker
 | |
| 
 | |
| 	// These fields, once set by processOption, will not change.
 | |
| 	exporters []exporter // List of exporters for structs with unexported fields
 | |
| 	opts      Options    // List of all fundamental and filter options
 | |
| }
 | |
| 
 | |
| func newState(opts []Option) *state {
 | |
| 	// Always ensure a validator option exists to validate the inputs.
 | |
| 	s := &state{opts: Options{validator{}}}
 | |
| 	s.curPtrs.Init()
 | |
| 	s.processOption(Options(opts))
 | |
| 	return s
 | |
| }
 | |
| 
 | |
| func (s *state) processOption(opt Option) {
 | |
| 	switch opt := opt.(type) {
 | |
| 	case nil:
 | |
| 	case Options:
 | |
| 		for _, o := range opt {
 | |
| 			s.processOption(o)
 | |
| 		}
 | |
| 	case coreOption:
 | |
| 		type filtered interface {
 | |
| 			isFiltered() bool
 | |
| 		}
 | |
| 		if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
 | |
| 			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
 | |
| 		}
 | |
| 		s.opts = append(s.opts, opt)
 | |
| 	case exporter:
 | |
| 		s.exporters = append(s.exporters, opt)
 | |
| 	case reporter:
 | |
| 		s.reporters = append(s.reporters, opt)
 | |
| 	default:
 | |
| 		panic(fmt.Sprintf("unknown option %T", opt))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // statelessCompare compares two values and returns the result.
 | |
| // This function is stateless in that it does not alter the current result,
 | |
| // or output to any registered reporters.
 | |
| func (s *state) statelessCompare(step PathStep) diff.Result {
 | |
| 	// We do not save and restore curPath and curPtrs because all of the
 | |
| 	// compareX methods should properly push and pop from them.
 | |
| 	// It is an implementation bug if the contents of the paths differ from
 | |
| 	// when calling this function to when returning from it.
 | |
| 
 | |
| 	oldResult, oldReporters := s.result, s.reporters
 | |
| 	s.result = diff.Result{} // Reset result
 | |
| 	s.reporters = nil        // Remove reporters to avoid spurious printouts
 | |
| 	s.compareAny(step)
 | |
| 	res := s.result
 | |
| 	s.result, s.reporters = oldResult, oldReporters
 | |
| 	return res
 | |
| }
 | |
| 
 | |
| func (s *state) compareAny(step PathStep) {
 | |
| 	// Update the path stack.
 | |
| 	s.curPath.push(step)
 | |
| 	defer s.curPath.pop()
 | |
| 	for _, r := range s.reporters {
 | |
| 		r.PushStep(step)
 | |
| 		defer r.PopStep()
 | |
| 	}
 | |
| 	s.recChecker.Check(s.curPath)
 | |
| 
 | |
| 	// Cycle-detection for slice elements (see NOTE in compareSlice).
 | |
| 	t := step.Type()
 | |
| 	vx, vy := step.Values()
 | |
| 	if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
 | |
| 		px, py := vx.Addr(), vy.Addr()
 | |
| 		if eq, visited := s.curPtrs.Push(px, py); visited {
 | |
| 			s.report(eq, reportByCycle)
 | |
| 			return
 | |
| 		}
 | |
| 		defer s.curPtrs.Pop(px, py)
 | |
| 	}
 | |
| 
 | |
| 	// Rule 1: Check whether an option applies on this node in the value tree.
 | |
| 	if s.tryOptions(t, vx, vy) {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Rule 2: Check whether the type has a valid Equal method.
 | |
| 	if s.tryMethod(t, vx, vy) {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Rule 3: Compare based on the underlying kind.
 | |
| 	switch t.Kind() {
 | |
| 	case reflect.Bool:
 | |
| 		s.report(vx.Bool() == vy.Bool(), 0)
 | |
| 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
 | |
| 		s.report(vx.Int() == vy.Int(), 0)
 | |
| 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | |
| 		s.report(vx.Uint() == vy.Uint(), 0)
 | |
| 	case reflect.Float32, reflect.Float64:
 | |
| 		s.report(vx.Float() == vy.Float(), 0)
 | |
| 	case reflect.Complex64, reflect.Complex128:
 | |
| 		s.report(vx.Complex() == vy.Complex(), 0)
 | |
| 	case reflect.String:
 | |
| 		s.report(vx.String() == vy.String(), 0)
 | |
| 	case reflect.Chan, reflect.UnsafePointer:
 | |
| 		s.report(vx.Pointer() == vy.Pointer(), 0)
 | |
| 	case reflect.Func:
 | |
| 		s.report(vx.IsNil() && vy.IsNil(), 0)
 | |
| 	case reflect.Struct:
 | |
| 		s.compareStruct(t, vx, vy)
 | |
| 	case reflect.Slice, reflect.Array:
 | |
| 		s.compareSlice(t, vx, vy)
 | |
| 	case reflect.Map:
 | |
| 		s.compareMap(t, vx, vy)
 | |
| 	case reflect.Ptr:
 | |
| 		s.comparePtr(t, vx, vy)
 | |
| 	case reflect.Interface:
 | |
| 		s.compareInterface(t, vx, vy)
 | |
| 	default:
 | |
| 		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
 | |
| 	// Evaluate all filters and apply the remaining options.
 | |
| 	if opt := s.opts.filter(s, t, vx, vy); opt != nil {
 | |
| 		opt.apply(s, vx, vy)
 | |
| 		return true
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
 | |
| 	// Check if this type even has an Equal method.
 | |
| 	m, ok := t.MethodByName("Equal")
 | |
| 	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	eq := s.callTTBFunc(m.Func, vx, vy)
 | |
| 	s.report(eq, reportByMethod)
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
 | |
| 	if !s.dynChecker.Next() {
 | |
| 		return f.Call([]reflect.Value{v})[0]
 | |
| 	}
 | |
| 
 | |
| 	// Run the function twice and ensure that we get the same results back.
 | |
| 	// We run in goroutines so that the race detector (if enabled) can detect
 | |
| 	// unsafe mutations to the input.
 | |
| 	c := make(chan reflect.Value)
 | |
| 	go detectRaces(c, f, v)
 | |
| 	got := <-c
 | |
| 	want := f.Call([]reflect.Value{v})[0]
 | |
| 	if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
 | |
| 		// To avoid false-positives with non-reflexive equality operations,
 | |
| 		// we sanity check whether a value is equal to itself.
 | |
| 		if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
 | |
| 			return want
 | |
| 		}
 | |
| 		panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
 | |
| 	}
 | |
| 	return want
 | |
| }
 | |
| 
 | |
| func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
 | |
| 	if !s.dynChecker.Next() {
 | |
| 		return f.Call([]reflect.Value{x, y})[0].Bool()
 | |
| 	}
 | |
| 
 | |
| 	// Swapping the input arguments is sufficient to check that
 | |
| 	// f is symmetric and deterministic.
 | |
| 	// We run in goroutines so that the race detector (if enabled) can detect
 | |
| 	// unsafe mutations to the input.
 | |
| 	c := make(chan reflect.Value)
 | |
| 	go detectRaces(c, f, y, x)
 | |
| 	got := <-c
 | |
| 	want := f.Call([]reflect.Value{x, y})[0].Bool()
 | |
| 	if !got.IsValid() || got.Bool() != want {
 | |
| 		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
 | |
| 	}
 | |
| 	return want
 | |
| }
 | |
| 
 | |
| func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
 | |
| 	var ret reflect.Value
 | |
| 	defer func() {
 | |
| 		recover() // Ignore panics, let the other call to f panic instead
 | |
| 		c <- ret
 | |
| 	}()
 | |
| 	ret = f.Call(vs)[0]
 | |
| }
 | |
| 
 | |
| func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
 | |
| 	var addr bool
 | |
| 	var vax, vay reflect.Value // Addressable versions of vx and vy
 | |
| 
 | |
| 	var mayForce, mayForceInit bool
 | |
| 	step := StructField{&structField{}}
 | |
| 	for i := 0; i < t.NumField(); i++ {
 | |
| 		step.typ = t.Field(i).Type
 | |
| 		step.vx = vx.Field(i)
 | |
| 		step.vy = vy.Field(i)
 | |
| 		step.name = t.Field(i).Name
 | |
| 		step.idx = i
 | |
| 		step.unexported = !isExported(step.name)
 | |
| 		if step.unexported {
 | |
| 			if step.name == "_" {
 | |
| 				continue
 | |
| 			}
 | |
| 			// Defer checking of unexported fields until later to give an
 | |
| 			// Ignore a chance to ignore the field.
 | |
| 			if !vax.IsValid() || !vay.IsValid() {
 | |
| 				// For retrieveUnexportedField to work, the parent struct must
 | |
| 				// be addressable. Create a new copy of the values if
 | |
| 				// necessary to make them addressable.
 | |
| 				addr = vx.CanAddr() || vy.CanAddr()
 | |
| 				vax = makeAddressable(vx)
 | |
| 				vay = makeAddressable(vy)
 | |
| 			}
 | |
| 			if !mayForceInit {
 | |
| 				for _, xf := range s.exporters {
 | |
| 					mayForce = mayForce || xf(t)
 | |
| 				}
 | |
| 				mayForceInit = true
 | |
| 			}
 | |
| 			step.mayForce = mayForce
 | |
| 			step.paddr = addr
 | |
| 			step.pvx = vax
 | |
| 			step.pvy = vay
 | |
| 			step.field = t.Field(i)
 | |
| 		}
 | |
| 		s.compareAny(step)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
 | |
| 	isSlice := t.Kind() == reflect.Slice
 | |
| 	if isSlice && (vx.IsNil() || vy.IsNil()) {
 | |
| 		s.report(vx.IsNil() && vy.IsNil(), 0)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
 | |
| 	// since slices represents a list of pointers, rather than a single pointer.
 | |
| 	// The pointer checking logic must be handled on a per-element basis
 | |
| 	// in compareAny.
 | |
| 	//
 | |
| 	// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
 | |
| 	// pointer P, a length N, and a capacity C. Supposing each slice element has
 | |
| 	// a memory size of M, then the slice is equivalent to the list of pointers:
 | |
| 	//	[P+i*M for i in range(N)]
 | |
| 	//
 | |
| 	// For example, v[:0] and v[:1] are slices with the same starting pointer,
 | |
| 	// but they are clearly different values. Using the slice pointer alone
 | |
| 	// violates the assumption that equal pointers implies equal values.
 | |
| 
 | |
| 	step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
 | |
| 	withIndexes := func(ix, iy int) SliceIndex {
 | |
| 		if ix >= 0 {
 | |
| 			step.vx, step.xkey = vx.Index(ix), ix
 | |
| 		} else {
 | |
| 			step.vx, step.xkey = reflect.Value{}, -1
 | |
| 		}
 | |
| 		if iy >= 0 {
 | |
| 			step.vy, step.ykey = vy.Index(iy), iy
 | |
| 		} else {
 | |
| 			step.vy, step.ykey = reflect.Value{}, -1
 | |
| 		}
 | |
| 		return step
 | |
| 	}
 | |
| 
 | |
| 	// Ignore options are able to ignore missing elements in a slice.
 | |
| 	// However, detecting these reliably requires an optimal differencing
 | |
| 	// algorithm, for which diff.Difference is not.
 | |
| 	//
 | |
| 	// Instead, we first iterate through both slices to detect which elements
 | |
| 	// would be ignored if standing alone. The index of non-discarded elements
 | |
| 	// are stored in a separate slice, which diffing is then performed on.
 | |
| 	var indexesX, indexesY []int
 | |
| 	var ignoredX, ignoredY []bool
 | |
| 	for ix := 0; ix < vx.Len(); ix++ {
 | |
| 		ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
 | |
| 		if !ignored {
 | |
| 			indexesX = append(indexesX, ix)
 | |
| 		}
 | |
| 		ignoredX = append(ignoredX, ignored)
 | |
| 	}
 | |
| 	for iy := 0; iy < vy.Len(); iy++ {
 | |
| 		ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
 | |
| 		if !ignored {
 | |
| 			indexesY = append(indexesY, iy)
 | |
| 		}
 | |
| 		ignoredY = append(ignoredY, ignored)
 | |
| 	}
 | |
| 
 | |
| 	// Compute an edit-script for slices vx and vy (excluding ignored elements).
 | |
| 	edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
 | |
| 		return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
 | |
| 	})
 | |
| 
 | |
| 	// Replay the ignore-scripts and the edit-script.
 | |
| 	var ix, iy int
 | |
| 	for ix < vx.Len() || iy < vy.Len() {
 | |
| 		var e diff.EditType
 | |
| 		switch {
 | |
| 		case ix < len(ignoredX) && ignoredX[ix]:
 | |
| 			e = diff.UniqueX
 | |
| 		case iy < len(ignoredY) && ignoredY[iy]:
 | |
| 			e = diff.UniqueY
 | |
| 		default:
 | |
| 			e, edits = edits[0], edits[1:]
 | |
| 		}
 | |
| 		switch e {
 | |
| 		case diff.UniqueX:
 | |
| 			s.compareAny(withIndexes(ix, -1))
 | |
| 			ix++
 | |
| 		case diff.UniqueY:
 | |
| 			s.compareAny(withIndexes(-1, iy))
 | |
| 			iy++
 | |
| 		default:
 | |
| 			s.compareAny(withIndexes(ix, iy))
 | |
| 			ix++
 | |
| 			iy++
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
 | |
| 	if vx.IsNil() || vy.IsNil() {
 | |
| 		s.report(vx.IsNil() && vy.IsNil(), 0)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Cycle-detection for maps.
 | |
| 	if eq, visited := s.curPtrs.Push(vx, vy); visited {
 | |
| 		s.report(eq, reportByCycle)
 | |
| 		return
 | |
| 	}
 | |
| 	defer s.curPtrs.Pop(vx, vy)
 | |
| 
 | |
| 	// We combine and sort the two map keys so that we can perform the
 | |
| 	// comparisons in a deterministic order.
 | |
| 	step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
 | |
| 	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
 | |
| 		step.vx = vx.MapIndex(k)
 | |
| 		step.vy = vy.MapIndex(k)
 | |
| 		step.key = k
 | |
| 		if !step.vx.IsValid() && !step.vy.IsValid() {
 | |
| 			// It is possible for both vx and vy to be invalid if the
 | |
| 			// key contained a NaN value in it.
 | |
| 			//
 | |
| 			// Even with the ability to retrieve NaN keys in Go 1.12,
 | |
| 			// there still isn't a sensible way to compare the values since
 | |
| 			// a NaN key may map to multiple unordered values.
 | |
| 			// The most reasonable way to compare NaNs would be to compare the
 | |
| 			// set of values. However, this is impossible to do efficiently
 | |
| 			// since set equality is provably an O(n^2) operation given only
 | |
| 			// an Equal function. If we had a Less function or Hash function,
 | |
| 			// this could be done in O(n*log(n)) or O(n), respectively.
 | |
| 			//
 | |
| 			// Rather than adding complex logic to deal with NaNs, make it
 | |
| 			// the user's responsibility to compare such obscure maps.
 | |
| 			const help = "consider providing a Comparer to compare the map"
 | |
| 			panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
 | |
| 		}
 | |
| 		s.compareAny(step)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
 | |
| 	if vx.IsNil() || vy.IsNil() {
 | |
| 		s.report(vx.IsNil() && vy.IsNil(), 0)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Cycle-detection for pointers.
 | |
| 	if eq, visited := s.curPtrs.Push(vx, vy); visited {
 | |
| 		s.report(eq, reportByCycle)
 | |
| 		return
 | |
| 	}
 | |
| 	defer s.curPtrs.Pop(vx, vy)
 | |
| 
 | |
| 	vx, vy = vx.Elem(), vy.Elem()
 | |
| 	s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
 | |
| }
 | |
| 
 | |
| func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
 | |
| 	if vx.IsNil() || vy.IsNil() {
 | |
| 		s.report(vx.IsNil() && vy.IsNil(), 0)
 | |
| 		return
 | |
| 	}
 | |
| 	vx, vy = vx.Elem(), vy.Elem()
 | |
| 	if vx.Type() != vy.Type() {
 | |
| 		s.report(false, 0)
 | |
| 		return
 | |
| 	}
 | |
| 	s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
 | |
| }
 | |
| 
 | |
| func (s *state) report(eq bool, rf resultFlags) {
 | |
| 	if rf&reportByIgnore == 0 {
 | |
| 		if eq {
 | |
| 			s.result.NumSame++
 | |
| 			rf |= reportEqual
 | |
| 		} else {
 | |
| 			s.result.NumDiff++
 | |
| 			rf |= reportUnequal
 | |
| 		}
 | |
| 	}
 | |
| 	for _, r := range s.reporters {
 | |
| 		r.Report(Result{flags: rf})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // recChecker tracks the state needed to periodically perform checks that
 | |
| // user provided transformers are not stuck in an infinitely recursive cycle.
 | |
| type recChecker struct{ next int }
 | |
| 
 | |
| // Check scans the Path for any recursive transformers and panics when any
 | |
| // recursive transformers are detected. Note that the presence of a
 | |
| // recursive Transformer does not necessarily imply an infinite cycle.
 | |
| // As such, this check only activates after some minimal number of path steps.
 | |
| func (rc *recChecker) Check(p Path) {
 | |
| 	const minLen = 1 << 16
 | |
| 	if rc.next == 0 {
 | |
| 		rc.next = minLen
 | |
| 	}
 | |
| 	if len(p) < rc.next {
 | |
| 		return
 | |
| 	}
 | |
| 	rc.next <<= 1
 | |
| 
 | |
| 	// Check whether the same transformer has appeared at least twice.
 | |
| 	var ss []string
 | |
| 	m := map[Option]int{}
 | |
| 	for _, ps := range p {
 | |
| 		if t, ok := ps.(Transform); ok {
 | |
| 			t := t.Option()
 | |
| 			if m[t] == 1 { // Transformer was used exactly once before
 | |
| 				tf := t.(*transformer).fnc.Type()
 | |
| 				ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
 | |
| 			}
 | |
| 			m[t]++
 | |
| 		}
 | |
| 	}
 | |
| 	if len(ss) > 0 {
 | |
| 		const warning = "recursive set of Transformers detected"
 | |
| 		const help = "consider using cmpopts.AcyclicTransformer"
 | |
| 		set := strings.Join(ss, "\n\t")
 | |
| 		panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // dynChecker tracks the state needed to periodically perform checks that
 | |
| // user provided functions are symmetric and deterministic.
 | |
| // The zero value is safe for immediate use.
 | |
| type dynChecker struct{ curr, next int }
 | |
| 
 | |
| // Next increments the state and reports whether a check should be performed.
 | |
| //
 | |
| // Checks occur every Nth function call, where N is a triangular number:
 | |
| //
 | |
| //	0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
 | |
| //
 | |
| // See https://en.wikipedia.org/wiki/Triangular_number
 | |
| //
 | |
| // This sequence ensures that the cost of checks drops significantly as
 | |
| // the number of functions calls grows larger.
 | |
| func (dc *dynChecker) Next() bool {
 | |
| 	ok := dc.curr == dc.next
 | |
| 	if ok {
 | |
| 		dc.curr = 0
 | |
| 		dc.next++
 | |
| 	}
 | |
| 	dc.curr++
 | |
| 	return ok
 | |
| }
 | |
| 
 | |
| // makeAddressable returns a value that is always addressable.
 | |
| // It returns the input verbatim if it is already addressable,
 | |
| // otherwise it creates a new value and returns an addressable copy.
 | |
| func makeAddressable(v reflect.Value) reflect.Value {
 | |
| 	if v.CanAddr() {
 | |
| 		return v
 | |
| 	}
 | |
| 	vc := reflect.New(v.Type()).Elem()
 | |
| 	vc.Set(v)
 | |
| 	return vc
 | |
| }
 |