225 Commits

Author SHA1 Message Date
a6045b3ddb Update homework.md 2025-01-13 18:29:53 +01:00
e6fd4c16d2 update: cohort 2025 - week1 homework (#580)
* Add docker-compose question

* Replaces Q1 with the previous Q2 question
* Adds docker network/docker-compose question as the new Q2

* Update Question 3 to be count trips segmentation

* Update Q7 about Terraform

* Update all answers to use checkboxes

* Update Q3 to use numbers instead of bullets for the events

* Typo fix
2025-01-13 16:36:43 +01:00
ded05d789c Fix grammar in asking-questions.md (#582) 2025-01-13 15:47:33 +01:00
c0b7d74647 I changed the homework link because it was not working (#581) 2025-01-13 15:47:08 +01:00
a65e6de49c Update README.md 2025-01-12 14:07:31 +01:00
11d5096f6e Update learning-in-public.md (closes #577) 2025-01-12 12:12:53 +01:00
4fbe5ebe43 Update README of Weeks 01 and 02 with Horeb's Notes (#579) 2025-01-12 12:06:49 +01:00
020af9c5fa fix: separate db to kestra (#578)
* fix: separate db to kestra

* fix: add resources for postgres
2025-01-12 12:06:32 +01:00
196d307de7 hw1 2025 2025-01-12 11:56:00 +01:00
8a3cc88f5e fix: 2.2.9 link (#576)
fix: update homework tasks

fix q2
2025-01-09 16:49:39 +01:00
f66f0ff62b Update README.md 2025-01-07 10:43:41 +01:00
092e24eb6c feat: add Kestra videos and updated flows (#573)
* fix: kestra readme

* fix: flow changes to match videos

* fix: video placement

* fix: first video

* fix: video order
2025-01-07 10:42:38 +01:00
7e13f11a2d Update README.md 2025-01-06 22:59:48 +01:00
1e7c141cb7 Update dlt.md 2025-01-06 11:07:12 +01:00
fe4500b0ca Update README.md 2025-01-05 10:06:43 +01:00
e830b57a4c Spell fixed after-sign-up.md (#571) 2025-01-02 08:56:43 +01:00
0281175f7c Update README with Kestra notes (#572) 2025-01-02 08:56:31 +01:00
f24e9dc1d8 update module 1 readme.md with Manuel Notes (#569) 2024-12-24 08:16:25 +01:00
8daeb91a92 fix: avoid hardcoding schema info in dbt (#566)
* fix: avoid hardcoding schema info in dbt

* Update schema.yml
2024-12-20 10:47:28 +01:00
1fb6720a93 Fix taxi zone lookup CSV file name (#563) 2024-12-19 13:57:59 +01:00
3d41139216 Update README.md 2024-12-19 13:57:16 +01:00
d5a4567208 feat: add kestra module (#567)
* feat: add kestra module

* fix: image

* Update README.md

* fix bad commit

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* make img more compact

* fix homework

* Update README.md

* fix: null unique_row_id

* fix: dbt flow id

* fix: purge and dbt
2024-12-19 09:37:03 +01:00
1739740eba Update README.md 2024-12-18 18:48:09 +01:00
cee8c30227 Update pyspark.md (#559)
update link that works
2024-11-25 09:18:41 +01:00
8a09faf5a5 remove leaderboard 2024-11-25 09:11:21 +01:00
59254b4f66 new cohort & sponsors 2024-11-25 09:10:51 +01:00
93a5f99aea Update README.md 2024-11-04 15:41:45 +01:00
beb77c92b9 Update README.md with Kemal's notes (#553) 2024-08-29 18:55:15 +02:00
5a6cedd21b Update learning-in-public.md 2024-08-04 11:45:03 +02:00
cd322fb154 Fixed scala version as per issue #431 (#552) 2024-07-17 08:57:28 +02:00
380eafa8d1 Update README.md 2024-07-11 16:45:04 +02:00
6aa4a58420 Fixed a typo in awesome-data-engineering.md (#550) 2024-07-01 09:30:23 +02:00
f64aa8339b learning in public 2024-06-24 10:32:04 +02:00
568f47eccd Update README.md (#549)
* Update README.md

* Update README.md
2024-06-18 10:19:58 +02:00
57edfa075f Update README.md 2024-06-04 13:45:53 +02:00
6f35486ac6 Update README.md 2024-06-04 13:40:00 +02:00
7fb9aa7c5b Update README.md 2024-05-28 12:09:08 +02:00
f0ad0f2c75 Create leaderboard.md 2024-05-28 12:08:39 +02:00
3f062330c7 Update project.md 2024-04-19 22:32:16 +02:00
37e37b3c9c Update certificates.md 2024-04-19 22:27:50 +02:00
be1fe3f071 Update windows.md (#544)
* Update windows.md

* Update windows.md

---------

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-04-09 06:17:57 +02:00
8f67b3358d Fixed typos in the asking-questions.md (#543)
Fixed some typing errors i.e. (past -> paste, discus -> discuss) and grammatical mistake i.e. (reply -> replying) in the asking-questions.md file.
2024-04-09 06:16:37 +02:00
20f14e5a5c Update project.md 2024-04-05 18:13:16 +02:00
191d9fe23d add my personal notes for kafka (#540) 2024-04-01 11:11:17 +02:00
eea47ecfe5 Create awesome-data-engineering.md 2024-03-26 16:32:59 +01:00
4345a33d7f Update README.md
more points for problem description
2024-03-19 16:41:47 +01:00
5f27b7ceb5 renamed 2024-03-19 16:23:55 +01:00
b8da62cb88 Update project.md 2024-03-19 15:54:41 +01:00
c1d6fde336 Update README.md 2024-03-18 16:59:29 +01:00
3ad1730500 Update project.md 2024-03-18 16:17:10 +01:00
6bdf7883a5 Update README.md (#536)
2024 videos transcript
2024-03-18 16:10:35 +01:00
6b2e40d70a clarifying what is to be submitted for questions 2 and 7 (#538)
Co-authored-by: jessicadesilva12 <jessicadesilva12@gmail.com>
2024-03-18 16:10:15 +01:00
ed96de4b49 Update rising-wave.md (#537) 2024-03-14 09:56:53 +01:00
4746212309 Update homework.md 2024-03-13 15:33:34 +01:00
8c0bb0b43e Update homework.md (#535)
Added Homework Week 5 Solution Video Link to homework.md in cohorts/2024/05-batch.
2024-03-13 11:59:38 +01:00
1ad93cd381 Update homework.md 2024-03-12 23:54:16 +01:00
2096b9e2a1 clarifications 2024-03-12 23:46:05 +01:00
beeb9e6454 homework 6 2024-03-12 23:31:51 +01:00
af646fa483 Update pyspark.md 2024-03-12 08:14:55 +01:00
71d5e47ea0 cosmetic changes 2024-03-12 07:47:10 +01:00
744316473e redoding the homework 2024-03-12 07:44:37 +01:00
6c045a2fa7 redpanda and homework 6 2024-03-11 11:26:52 +01:00
ef377950c0 Update README.md 2024-03-10 13:28:35 +01:00
2990b7f14e Update rising-wave.md 2024-03-08 11:42:11 +01:00
44fc08d7db Update README.md 2024-03-07 18:13:47 +01:00
7caa2ff237 fix homework typo (#530) 2024-03-06 08:44:56 +01:00
5801672ec8 Update README.md (#527)
videos transcript week 5
2024-03-05 10:28:15 +01:00
4877ceb245 solution 2024-03-05 10:26:30 +01:00
77340b1d79 Update rising-wave.md 2024-03-04 23:20:49 +01:00
177b1a8c18 Update RisingWave Rewards (#528)
* Update rising-wave.md

* Update rising-wave.md

* Update rising-wave.md
2024-03-04 19:14:42 +01:00
5b71053758 Update macos.md (#521)
* Update macos.md

Anaconda based pyspark setup

* Update macos.md
2024-03-04 13:58:25 +01:00
9f8d5d12fe Update 04_pyspark.ipynb (#524) 2024-03-04 13:57:26 +01:00
ae86a2001d add Spark in Google Colab instruction (#523) 2024-02-29 19:39:36 +01:00
9d62b2cc61 Update rising-wave.md (#522)
* Update rising-wave.md

* Update rising-wave.md
2024-02-28 09:36:44 +01:00
ab39fc3bcc Update homework.md 2024-02-27 23:33:09 +01:00
5873a63ce9 Update homework.md 2024-02-27 23:32:36 +01:00
89ea5e8bac update 05-batch README (#517) 2024-02-27 18:41:28 +01:00
0ac417886c Update RisingWave Homework (#519)
* Update rising-wave.md

* Update rising-wave.md
2024-02-27 18:33:51 +01:00
35d50cec77 Adding link to my week 4 notes (#520)
Adding my notes to the week 4 readme
2024-02-27 18:33:16 +01:00
be40774fdd Merge pull request #509 from inner-outer-space/patch-6
Update README.md
2024-02-23 09:33:20 +01:00
1b516814d8 Merge pull request #510 from inner-outer-space/patch-5
Update README.md
2024-02-23 09:33:02 +01:00
eee41d9457 Update homework.md 2024-02-23 08:46:03 +01:00
eea2214132 link to pyspark installation guide (#514) 2024-02-22 13:21:41 +01:00
e9b3a17b9c q3 important tip added (#512) 2024-02-21 14:07:22 +01:00
b94ab37921 Update homework.md 2024-02-20 14:57:00 +01:00
ae09f9b79d fix to spark link (#511) 2024-02-20 14:53:36 +01:00
f940e69e52 Update README.md
Restructured my repo and broke the link to my notes... fixing. thx.
2024-02-20 14:47:11 +01:00
a7caea6294 Update README.md
I restructured my repo, so am fixing my broken links to notes. Thx.
2024-02-20 14:42:50 +01:00
889b748f27 Update homework wording 2024-02-19 21:57:32 +01:00
22134a14f1 Added code to work with .parquet files (#405)
* Added code to work with .parquet files

* updated README.md
2024-02-19 18:28:30 +01:00
ee48f1d3f8 add Fedor Faizov to public leaderboard 2023 (#382)
* add Fedor Faizov to public leaderboard 2023

* upd by Alexey comment
2024-02-19 18:27:19 +01:00
884f9f0350 Update README.md - Add notes (#502) 2024-02-19 18:25:39 +01:00
fe849fdf5c update linux install instruction to download spark from archive instead (#504) 2024-02-19 18:25:13 +01:00
e719405956 Added Homework for Week 5 2024 (#503)
* Added Homework for Week 5 2024

* Update homework.md

---------

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-02-19 18:24:47 +01:00
1ca12378ff Update homework.md 2024-02-16 16:54:44 +01:00
624efa10ab Update homework.md 2024-02-15 18:55:12 +01:00
da36243d1c Update homework.md 2024-02-15 18:54:31 +01:00
ddc22c29ab Merge pull request #500 from shayansm2/main
fixed a typo
2024-02-15 15:47:56 +01:00
19be2ed8f4 fix a type 2024-02-15 18:06:03 +03:30
db7f42d882 Update links in README.md 2024-02-14 11:36:27 +01:00
98f6a4df08 Merge pull request #498 from jessicadesilva/fix-typos
fixed typos in column names
2024-02-14 11:30:08 +01:00
762b0ce4b9 fixed typos in column names 2024-02-13 19:22:34 -08:00
c9fae602b4 Update hack-load-data.sql 2024-02-13 16:51:11 +01:00
51d4241650 Create hack-load-data.sql 2024-02-13 16:50:14 +01:00
1dd47ba96c changed week to module 2024-02-13 15:04:27 +01:00
a7393a4063 Update README.md (#486)
Added link to my notes
2024-02-13 11:38:08 +01:00
45991f4254 Update README.md (#488)
Added week 4 notes

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-02-13 11:37:53 +01:00
b7a5d61406 Update README.md (#489)
Adding my week 3 notes/blog post

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-02-13 11:37:18 +01:00
afdf9508e6 Update README.md (#490)
* Update README.md

Included mage script file to load parquet file from remote URL and push to google bucket for homework data loading.

* Update README.md

dataloader script file for mage to load parquet to google bucket. Also adds keyword argument to retain timestamp formating when parquet to bigquery conversion happens

---------

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-02-13 11:36:18 +01:00
b44834ff60 add hw study note to 03-data-warehouse readme (#491) 2024-02-13 11:34:53 +01:00
c5a06cf150 Update README.md (#495)
videos transcript week4
2024-02-13 11:34:39 +01:00
770197cbe3 Update homework.md 2024-02-13 11:33:21 +01:00
cb874911ba Update homework.md 2024-02-11 23:37:28 +01:00
782acf26ce Update dlt.md 2024-02-09 18:56:01 +01:00
1c7926a713 Update README.md 2024-02-08 17:28:25 +01:00
68f0e6cb53 fix homework options (#485) 2024-02-08 16:43:30 +01:00
b17729fa9a README.md (#481) 2024-02-07 21:15:22 +01:00
7de55821ee Update README.md (#482)
steps to send data from Mage to GCS + creating external table with data from bucket
2024-02-07 21:14:54 +01:00
8a56888246 Update homework.md 2024-02-06 21:57:29 +01:00
c3e5ef4518 Update dlt.md 2024-02-06 21:23:26 +01:00
f31e2fe93a Update README.md with embedded YT URLs (#480) 2024-02-06 17:43:10 +01:00
36c29eaf1b Update README.md with embedded YT URLs (#479) 2024-02-06 08:01:19 +01:00
2ab335505c change week 2 homework for transformer block (#473) 2024-02-06 08:00:59 +01:00
3fabb1cfda modify like to gcp overview (#475) 2024-02-06 08:00:20 +01:00
baa2ea4cf7 Update README.md with embedded YT URLs (#476) 2024-02-06 07:59:42 +01:00
4553062578 Update README.md with embedded YT URLs (#477) 2024-02-06 07:59:23 +01:00
d3dabf2b81 Update README.md with embedded YT URLs (#478) 2024-02-06 07:58:52 +01:00
46e15f69e7 Create homework.md 2024-02-05 23:41:06 +01:00
d2e59f2350 Update URL in homework 3 (#448)
* Update URL in homework 3

URL was incorrect leading to errors in downloading

* Update homework.md
2024-02-05 18:12:54 +01:00
da6a842ee7 Update dlt.md 2024-02-05 17:43:58 +01:00
d763f07395 Update dlt.md 2024-02-05 16:49:12 +01:00
427d17d012 rearranged notebooks #461 2024-02-05 12:54:11 +01:00
51a9c95b7d Update homework.md (week 2 & 3) (#456)
* Update homework.md (week 2)

Update homework.md to explain beforehand what should be included in the homework repository

* Update homework.md (week 3)

Update homework.md to explain beforehand what should be included in the homework repository
2024-02-05 12:34:02 +01:00
6a2b86d8af Update README.md (#460)
week 3 notes
2024-02-05 12:33:37 +01:00
e659ff26b8 fix location join (#470) 2024-02-05 12:32:17 +01:00
6bc22c63cf Use embedded links in youtube URLs (#471)
Update README.md with markdown formatting from 

- https://markdown-videos-api.jorgenkh.no/docs#/
- https://github.com/orgs/community/discussions/16925
2024-02-05 12:29:51 +01:00
0f9b564bce Merge pull request #468 from DataTalksClub/de-zoomcamp-videos
De zoomcamp creating the whole project
2024-02-04 22:35:24 +01:00
fe4419866d Merge branch 'main' of https://github.com/DataTalksClub/data-engineering-zoomcamp into de-zoomcamp-videos 2024-02-04 21:34:26 +00:00
53b2676115 complete my whole project 2024-02-04 21:34:12 +00:00
c0c772b8ce Merge pull request #459 from inner-outer-space/patch-1
Update README.md
2024-02-04 22:16:06 +01:00
4117ce9f5d Merge pull request #458 from inner-outer-space/patch-2
Update README.md
2024-02-04 22:15:43 +01:00
b1ad88253c Merge pull request #466 from maria-fisher/patch-3
Update README.md
2024-02-04 22:15:17 +01:00
049dd34c6c fix conflics 2024-02-04 21:06:30 +00:00
1efd2a236c build a whole dbt project 2024-02-04 21:04:29 +00:00
72c4c821dc remove unused files 2024-02-04 20:48:14 +01:00
68e8e1a9cb make dm_monthly_zone_revenue cross-db 2024-02-04 20:47:15 +01:00
261b50d042 Update schema.yml tests 2024-02-04 20:34:52 +01:00
b269844ea3 Update dbt_project.yml variables 2024-02-04 20:32:52 +01:00
35b99817dc Update stg_yellow_tripdata to latest dbt syntax 2024-02-04 19:15:35 +01:00
78a5940578 Update to latest dbt functions naming 2024-02-04 19:11:46 +01:00
13a7752e5e Merge branch 'main' of https://github.com/DataTalksClub/data-engineering-zoomcamp into de-zoomcamp-videos 2024-02-04 17:28:29 +00:00
3af1021228 Update README.md
videos transcript week 3
2024-02-03 17:27:35 +00:00
f641f94a25 Update README.md
week 1 notes
2024-02-01 11:24:28 +01:00
0563fb5ff7 Update README.md
notes for week 2
2024-02-01 11:21:37 +01:00
a64e90ac36 Include logos for RisingWave Workshop (#455)
As per title.
2024-02-01 07:45:08 +01:00
e69c289b40 Update homework.md to explain beforehand what should be included in the homework repository (#447) 2024-01-31 18:57:25 +01:00
69bc9aec1b Update README.md batch [process (#449)
Update README.md batch [process
2024-01-31 18:55:05 +01:00
fe176c1679 Update README.md data streaming notes (#450)
Update README.md data streaming notes
2024-01-31 18:54:53 +01:00
d9cb16e282 Corrected errors in the instructions (#452) 2024-01-31 15:54:13 +01:00
6d2f1aa7e8 Delete Frame 124.jpg 2024-01-31 13:40:52 +03:00
390b2f6994 Add files via upload 2024-01-31 13:15:21 +03:00
ef6791e1cf Update README.md 2024-01-31 10:55:10 +01:00
865849b0ef Update README.md 2024-01-31 10:54:22 +01:00
9249bfba29 Add files via upload 2024-01-31 10:53:20 +01:00
bb43aa52e4 Delete images/architecture/untitled_diagram.drawio__10_.png 2024-01-31 10:48:33 +01:00
9a6d7878fd Delete images/architecture/arch_2.png 2024-01-31 10:48:22 +01:00
fe0b744ffe Update README.md 2024-01-31 10:43:28 +01:00
dbe68cd993 Add files via upload 2024-01-31 10:42:21 +01:00
a00f31fb85 formatting dlthub workshop (#451)
* adding dlt course

* adding dlt course

* improve formatting

* add cta

* add cta

* add links to slack

* visual improvements

* visual improvements

* visual improvements

---------

Co-authored-by: Adrian <Adrian>
2024-01-31 08:46:18 +01:00
9882dd7411 Update homework.md 2024-01-30 10:29:47 +01:00
f46e0044b9 Update homework.md 2024-01-30 10:29:16 +01:00
38087a646d Update homework.md (#429)
I believe the wording for question 2 is misleading or the correct answer isn't listed. When filtering the dataset to only contain records with more than zero passengers or trips longer than zero:

 ```
df = data[(data['passenger_count'] > 0) & (data['trip_distance'] > 0)]
```
the shape of the resulting dataframe is (139370, 20).

When filtering the dataframe based on the actual question:

```
df_2 = data[(data['passenger_count'] == 0) | (data['trip_distance'] == 0)]
```

the resulting shape is (9455, 20).
2024-01-29 23:31:41 +01:00
4617e63ddd Change the 1st homework of cohort 2024 to reduce ambiguity (#409) 2024-01-29 19:31:53 +01:00
738c22f91b Fix typo in JDK install instructions (#430)
Due to the missing extra dash the line yields the following error:
xcode-select: error: invalid argument '-install'
2024-01-29 19:28:48 +01:00
d576cfb1c9 Update README.md (#439)
Added youtube link to 2nd video on module-01 environment setup demo.
2024-01-29 19:27:43 +01:00
af248385c0 Update README.md (#443)
videos transcripts week 2

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-01-29 19:27:31 +01:00
7abbbde00e Update README.md (#444) 2024-01-29 19:26:41 +01:00
dd84d736bc Fix typo in README.md (#446)
seperated -> separated
2024-01-29 19:26:16 +01:00
6ae0b18eea Update homework.md 2024-01-29 19:12:35 +01:00
e9c8748e29 add dlt course content (#445)
* adding dlt course

* adding dlt course

* improve formatting

* add cta

* add cta

* add links to slack

---------

Co-authored-by: Adrian <Adrian>
2024-01-29 18:45:11 +01:00
a6fda6d5ca Update rising-wave.md (#441) 2024-01-29 15:25:03 +01:00
ee88d7f230 Merge branch 'main' of https://github.com/DataTalksClub/data-engineering-zoomcamp into de-zoomcamp-videos 2024-01-28 21:57:02 +00:00
7a251b614b Update homework.md 2024-01-28 22:40:58 +01:00
b6901c05bf init my dbt project! 2024-01-28 00:16:23 +00:00
9e89d9849e delete 2024-01-28 00:14:21 +00:00
2a59822b4a Merge pull request #438 from DataTalksClub/de-zoomcamp
Update week 4 project
2024-01-28 01:01:11 +01:00
f8221f25be add hack for loading initial data 2024-01-28 00:00:37 +00:00
9c219f7fdc update project 2024-01-27 23:57:45 +00:00
5703a49efd update directory 2024-01-27 22:54:09 +00:00
7e2c7f94c4 Merge pull request #410 from eltociear/patch-1
Update asking-questions.md
2024-01-27 22:55:02 +01:00
20671b4b48 Merge pull request #432 from DarkDesire/patch-1
Update homework.md for HW2. Right link for green taxi dataset
2024-01-27 22:53:39 +01:00
1d7f51ffaf Improve formatting W4 readme 2024-01-27 21:50:37 +01:00
43b2104fa9 Update W4 README for cohort 2024.md
Update links and content for readability
2024-01-27 21:38:20 +01:00
b11c9cb1e3 Update README.md 2024-01-27 17:53:10 +01:00
ee0546ba0a Update homework.md, right link for green taxi dataset 2024-01-26 14:05:43 +01:00
1decc32b8d Update asking-questions.md 2024-01-25 16:55:17 +01:00
178fe94ed8 Update asking-questions.md (#425) 2024-01-24 18:50:12 +01:00
a5e008b498 Update README.md 2024-01-24 15:56:30 +01:00
ebcb10c8ab Add walkthrough video and pdf links to Notes (#421) 2024-01-24 15:52:26 +01:00
cb55908a7c Update README.md 2024-01-24 10:42:23 +01:00
34a63cff05 add star history ;D (#423)
Co-authored-by: Magdalena Kuhn <magdalena.kuhn@bmw.de>
2024-01-24 08:41:28 +01:00
3e247158a4 Added Week3 Homework (#419) 2024-01-23 08:58:50 +01:00
11c60f66c7 Update homework.md (#415)
Fix terraform overview link
2024-01-19 10:56:18 +01:00
594faf0f32 Update homework.md 2024-01-18 22:25:21 +01:00
2bb25463ea Update homework.md (#414)
Correction of Q5 Header
2024-01-18 21:36:01 +01:00
bbe191aecc Update README.md 2024-01-18 17:05:43 +01:00
fa39a9d342 deadline for hw1 2024-01-17 11:37:19 +01:00
e4cb817399 cosmetic changes 2024-01-17 11:30:55 +01:00
5259facfb4 changing the design a bit 2024-01-17 09:59:32 +01:00
130a508a65 replaced short youtube urls with long 2024-01-17 09:51:12 +01:00
dce01a2794 Update asking-questions.md
Guidlines -> Guidelines
2024-01-17 00:14:20 +09:00
142b9f4ee4 Homework (again) (#403)
* homework redo

* homework redo

* hw
2024-01-13 16:47:17 +01:00
d18ceb6044 Update README.md (#404)
Added my notes to the list.
2024-01-13 16:46:52 +01:00
0e0aae68b4 Add links for course videos (#402)
* homework;

* homework;

* homework;

* homework;

* update with new videos

* update with new videos

* updates

* updates

* updates

* updates

* updates

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* Update README.md

* Update README.md

* Update README.md

* Create homework.md

* Update README.md

* Update README.md

* Delete 02-workflow-orchestration/homework.md

* Delete cohorts/2024/week_2_workflow_orchestration/homework.md

* update homework

* Delete 02-workflow-orchestration/homework.md

* Create homework.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* update, add videos

* add video links

* add video links

* homework links

* Update homework.md

* Update README.md

---------

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-01-12 22:15:55 +01:00
468aacb1ef Update README.md 2024-01-10 13:48:42 +01:00
860833525a Update Metadata for Week 2 (#399)
* homework;

* homework;

* homework;

* homework;

* update with new videos

* update with new videos

* updates

* updates

* updates

* updates

* updates

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* polish

* Update README.md

* Update README.md

* Update README.md

* Create homework.md

* Update README.md

* Update README.md

* Delete 02-workflow-orchestration/homework.md

* Delete cohorts/2024/week_2_workflow_orchestration/homework.md

---------

Co-authored-by: Alexey Grigorev <alexeygrigorev@users.noreply.github.com>
2024-01-09 23:33:55 +01:00
2418faf718 PR to address change in PgAdmin 4 UI, for creating a server. (#400)
* PgAdmin UI update note added.

* Punctuation Update.
2024-01-09 23:31:27 +01:00
325131f959 typo 2024-01-08 23:30:47 +01:00
8c455873fd workshops 2024-01-08 18:06:07 +01:00
be68361c40 renaming + syllabus update 2024-01-08 17:51:51 +01:00
bfef9aa2fb add prefect links to cohort 2023 (#391)
* add prefect links to cohort 2023

* capitalize readme and tidy up notes

* add link to prefect in the main orchestration page

* clean up week 2 readme
2023-12-30 22:22:38 +01:00
9847430ca7 Update README.md 2023-12-23 20:14:37 +01:00
960fed9828 Update README.md 2023-12-21 10:43:40 +01:00
3f5cefcdd7 Add files via upload 2023-12-21 10:42:49 +01:00
57c7ce33f8 Adding Module 1 HW (#396)
* Adding

* Changing folder

---------

Co-authored-by: Luis Oliveira <luiolive3@publicisgroupe.net>
2023-12-20 19:10:37 +01:00
234 changed files with 26032 additions and 1437 deletions

View File

@ -1,93 +0,0 @@
# See here for image contents: https://github.com/microsoft/vscode-dev-containers/tree/v0.177.0/containers/go/.devcontainer/base.Dockerfile
# [Choice] Go version (use -bullseye variants on local arm64/Apple Silicon): 1, 1.16, 1.17, 1-bullseye, 1.16-bullseye, 1.17-bullseye, 1-buster, 1.16-buster, 1.17-buster
ARG VARIANT=1-bullseye
FROM mcr.microsoft.com/vscode/devcontainers/go:0-${VARIANT}
# [Choice] Node.js version: none, lts/*, 16, 14, 12, 10
ARG NODE_VERSION="none"
RUN if [ "${NODE_VERSION}" != "none" ]; then su vscode -c "umask 0002 && . /usr/local/share/nvm/nvm.sh && nvm install ${NODE_VERSION} 2>&1"; fi
# Install powershell
ARG PS_VERSION="7.2.1"
# powershell-7.3.0-linux-x64.tar.gz
# powershell-7.3.0-linux-arm64.tar.gz
RUN ARCH="$(dpkg --print-architecture)"; \
if [ "${ARCH}" = "amd64" ]; then \
PS_BIN="v$PS_VERSION/powershell-$PS_VERSION-linux-x64.tar.gz"; \
elif [ "${ARCH}" = "arm64" ]; then \
PS_BIN="v$PS_VERSION/powershell-$PS_VERSION-linux-arm64.tar.gz"; \
elif [ "${ARCH}" = "armhf" ]; then \
PS_BIN="v$PS_VERSION/powershell-$PS_VERSION-linux-arm32.tar.gz"; \
fi; \
wget https://github.com/PowerShell/PowerShell/releases/download/$PS_BIN -O pwsh.tar.gz; \
mkdir /usr/local/pwsh && \
tar Cxvfz /usr/local/pwsh pwsh.tar.gz && \
rm pwsh.tar.gz
ENV PATH=$PATH:/usr/local/pwsh
RUN echo 'deb http://download.opensuse.org/repositories/shells:/fish:/release:/3/Debian_11/ /' | tee /etc/apt/sources.list.d/shells:fish:release:3.list; \
curl -fsSL https://download.opensuse.org/repositories/shells:fish:release:3/Debian_11/Release.key | gpg --dearmor | tee /etc/apt/trusted.gpg.d/shells_fish_release_3.gpg > /dev/null; \
apt-get update && export DEBIAN_FRONTEND=noninteractive \
&& apt-get install -y --no-install-recommends \
fish \
tmux \
fzf \
&& apt-get clean
ARG USERNAME=vscode
# Download the oh-my-posh binary
RUN mkdir /home/${USERNAME}/bin; \
wget https://github.com/JanDeDobbeleer/oh-my-posh/releases/latest/download/posh-linux-$(dpkg --print-architecture) -O /home/${USERNAME}/bin/oh-my-posh; \
chmod +x /home/${USERNAME}/bin/oh-my-posh; \
chown ${USERNAME}: /home/${USERNAME}/bin;
# NOTE: devcontainers are Linux-only at this time but when
# Windows or Darwin is supported someone will need to improve
# the code logic above.
# Setup a neat little PowerShell experience
RUN pwsh -Command Install-Module posh-git -Scope AllUsers -Force; \
pwsh -Command Install-Module z -Scope AllUsers -Force; \
pwsh -Command Install-Module PSFzf -Scope AllUsers -Force; \
pwsh -Command Install-Module Terminal-Icons -Scope AllUsers -Force;
# add the oh-my-posh path to the PATH variable
ENV PATH "$PATH:/home/${USERNAME}/bin"
# Can be used to override the devcontainer prompt default theme:
ENV POSH_THEME="https://raw.githubusercontent.com/JanDeDobbeleer/oh-my-posh/main/themes/clean-detailed.omp.json"
# Deploy oh-my-posh prompt to Powershell:
COPY Microsoft.PowerShell_profile.ps1 /home/${USERNAME}/.config/powershell/Microsoft.PowerShell_profile.ps1
# Deploy oh-my-posh prompt to Fish:
COPY config.fish /home/${USERNAME}/.config/fish/config.fish
# Everything runs as root during build time, so we want
# to make sure the vscode user can edit these paths too:
RUN chmod 777 -R /home/${USERNAME}/.config
# Override vscode's own Bash prompt with oh-my-posh:
RUN sed -i 's/^__bash_prompt$/#&/' /home/${USERNAME}/.bashrc && \
echo "eval \"\$(oh-my-posh init bash --config $POSH_THEME)\"" >> /home/${USERNAME}/.bashrc
# Override vscode's own ZSH prompt with oh-my-posh:
RUN echo "eval \"\$(oh-my-posh init zsh --config $POSH_THEME)\"" >> /home/${USERNAME}/.zshrc
# Set container timezone:
ARG TZ="UTC"
RUN ln -sf /usr/share/zoneinfo/${TZ} /etc/localtime
# Required for Python - Confluent Kafka on M1 Silicon
RUN apt update && apt -y install software-properties-common gcc
RUN git clone https://github.com/edenhill/librdkafka
RUN cd librdkafka && ./configure && make && make install && ldconfig
# [Optional] Uncomment the next line to use go get to install anything else you need
# RUN go get -x github.com/JanDeDobbeleer/battery
# [Optional] Uncomment this line to install global node packages.
# RUN su vscode -c "source /usr/local/share/nvm/nvm.sh && npm install -g <your-package-here>" 2>&1

View File

@ -1,14 +0,0 @@
Import-Module posh-git
Import-Module PSFzf -ArgumentList 'Ctrl+t', 'Ctrl+r'
Import-Module z
Import-Module Terminal-Icons
Set-PSReadlineKeyHandler -Key Tab -Function MenuComplete
$env:POSH_GIT_ENABLED=$true
oh-my-posh init pwsh --config $env:POSH_THEME | Invoke-Expression
# NOTE: You can override the above env var from the devcontainer.json "args" under the "build" key.
# Aliases
Set-Alias -Name ac -Value Add-Content

View File

@ -1,58 +0,0 @@
# Devcontainer for DataTalksClub Data Engineering Zoomcamp
This devcontainer sets up a development environment for this class. This can be used with both VS Code and GitHub Codespaces.
## Getting Started
To continue, make sure you have [Visual Studio Code](https://code.visualstudio.com/) and [Docker Desktop](https://www.docker.com/products/docker-desktop/) installed OR use [GitHub Codespaces](https://github.com/features/codespaces).
**Option 1: Local VS Code**
1. Clone the repo and connect to it in VS Code:
```bash
$ cd your/desired/repo/location
$ git clone https://github.com/DataTalksClub/data-engineering-zoomcamp.git
```
1. Download the [`Dev Containers`](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers) extension from the VS Code marketplace. Full docs on devcontainers [here](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers)
2. Press Cmd + Shift + P (Mac) or Ctrl + Shift + P (Windows) to open the Command Pallette. Type in `Dev Containers: Open Folder in Container` and select the repo directory
3. Wait for the container to build and the dependencies to install
**Option 2: GitHub Codespaces**
1. Fork this repo
2. From the repo page in GitHub, select the green `<> Code` button and choose Codespaces
3. Click `Create Codespace on Main`, or checkout a branch if you prefer
4. Wait for the container to build and the dependencies to install
5. Start developing!
## Included Tools and Languages:
* `Python 3.9`
- `Pandas`
- `SQLAlchemy`
- `PySpark`
- `PyArrow`
- `Polars`
- `Prefect 2.7.7` and all required Python dependencies
- `confluent-kafka`
* `Google Cloud SDK`
* `dbt-core`
- `dbt-postgres`
- `dbt-bigquery`
* `Terraform`
* `Jupyter Notebooks for VS Code`
* `Docker`
* `Spark`
* `JDK` version 11
* [`Oh-My-Posh Powershell themes`](https://github.com/JanDeDobbeleer/oh-my-posh)
* Popular VS Code themes (GitHub, Atom One, Material Icons etc.)
## Customization
Feel free to modify the `Dockerfile`, `devcontainer.json` or `requirements.txt` file to include any other tools or packages that you need for your development environment. In the Dockerfile, you can customize the `POSH_THEME` environment variable with a theme of your choosing from [here](https://ohmyposh.dev/docs/themes)

View File

@ -1,4 +0,0 @@
# Activate oh-my-posh prompt:
oh-my-posh init fish --config $POSH_THEME | source
# NOTE: You can override the above env vars from the devcontainer.json "args" under the "build" key.

View File

@ -1,117 +0,0 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the README at:
// https://github.com/microsoft/vscode-dev-containers/tree/v0.177.0/containers/go
{
"name": "oh-my-posh",
"build": {
"dockerfile": "Dockerfile",
"args": {
// Update the VARIANT arg to pick a version of Go: 1, 1.16, 1.17
// Append -bullseye or -buster to pin to an OS version.
// Use -bullseye variants on local arm64/Apple Silicon.
"VARIANT": "1.19-bullseye",
// Options:
"POSH_THEME": "https://raw.githubusercontent.com/JanDeDobbeleer/oh-my-posh/main/themes/clean-detailed.omp.json",
// Override me with your own timezone:
"TZ": "America/Moncton",
// Use one of the "TZ database name" entries from:
// https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
"NODE_VERSION": "lts/*",
//Powershell version
"PS_VERSION": "7.2.7"
}
},
"runArgs": ["--cap-add=SYS_PTRACE", "--security-opt", "seccomp=unconfined"],
"features": {
"ghcr.io/devcontainers/features/azure-cli:1": {
"version": "latest"
},
"ghcr.io/devcontainers/features/python:1": {
"version": "3.9"
},
"ghcr.io/devcontainers-contrib/features/curl-apt-get:1": {},
"ghcr.io/devcontainers-contrib/features/terraform-asdf:2": {},
"ghcr.io/devcontainers-contrib/features/yamllint:2": {},
"ghcr.io/devcontainers/features/docker-in-docker:2": {},
"ghcr.io/devcontainers/features/docker-outside-of-docker:1": {},
"ghcr.io/devcontainers/features/github-cli:1": {},
"ghcr.io/devcontainers-contrib/features/spark-sdkman:2": {
"jdkVersion": "11"
},
"ghcr.io/dhoeric/features/google-cloud-cli:1": {
"version": "latest"
}
},
// Set *default* container specific settings.json values on container create.
"customizations": {
"vscode": {
"settings": {
"go.toolsManagement.checkForUpdates": "local",
"go.useLanguageServer": true,
"go.gopath": "/go",
"go.goroot": "/usr/local/go",
"terminal.integrated.profiles.linux": {
"bash": {
"path": "bash"
},
"zsh": {
"path": "zsh"
},
"fish": {
"path": "fish"
},
"tmux": {
"path": "tmux",
"icon": "terminal-tmux"
},
"pwsh": {
"path": "pwsh",
"icon": "terminal-powershell"
}
},
"terminal.integrated.defaultProfile.linux": "pwsh",
"terminal.integrated.defaultProfile.windows": "pwsh",
"terminal.integrated.defaultProfile.osx": "pwsh",
"tasks.statusbar.default.hide": true,
"terminal.integrated.tabs.defaultIcon": "terminal-powershell",
"terminal.integrated.tabs.defaultColor": "terminal.ansiBlue",
"workbench.colorTheme": "GitHub Dark Dimmed",
"workbench.iconTheme": "material-icon-theme"
},
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"actboy168.tasks",
"eamodio.gitlens",
"davidanson.vscode-markdownlint",
"editorconfig.editorconfig",
"esbenp.prettier-vscode",
"github.vscode-pull-request-github",
"golang.go",
"ms-vscode.powershell",
"redhat.vscode-yaml",
"yzhang.markdown-all-in-one",
"ms-python.python",
"ms-python.vscode-pylance",
"ms-toolsai.jupyter",
"akamud.vscode-theme-onedark",
"ms-vscode-remote.remote-containers",
"PKief.material-icon-theme",
"GitHub.github-vscode-theme"
]
}
},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [3000],
// Use 'postCreateCommand' to run commands after the container is created.
"postCreateCommand": "pip3 install --user -r .devcontainer/requirements.txt --use-pep517",
// Comment out connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root.
"remoteUser": "vscode"
}

View File

@ -1,16 +0,0 @@
pandas==1.5.2
prefect==2.7.7
prefect-sqlalchemy==0.2.2
prefect-gcp[cloud_storage]==0.2.4
protobuf
pyarrow==10.0.1
pandas-gbq==0.18.1
psycopg2-binary==2.9.5
sqlalchemy==1.4.46
ipykernel
polars
dbt-core
dbt-bigquery
dbt-postgres
pyspark
confluent-kafka==1.9.2

View File

@ -113,6 +113,10 @@ $ aws s3 ls s3://nyc-tlc
PRE trip data/
```
You can refer the `data-loading-parquet.ipynb` and `data-loading-parquet.py` for code to handle both csv and paraquet files. (The lookup zones table which is needed later in this course is a csv file)
> Note: You will need to install the `pyarrow` library. (add it to your Dockerfile)
### pgAdmin
Running pgAdmin

View File

@ -0,0 +1,938 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "52bad16a",
"metadata": {},
"source": [
"# Data loading \n",
"\n",
"Here we will be using the ```.paraquet``` file we downloaded and do the following:\n",
" - Check metadata and table datatypes of the paraquet file/table\n",
" - Convert the paraquet file to pandas dataframe and check the datatypes. Additionally check the data dictionary to make sure you have the right datatypes in pandas, as pandas will automatically create the table in our database.\n",
" - Generate the DDL CREATE statement from pandas for a sanity check.\n",
" - Create a connection to our database using SQLAlchemy\n",
" - Convert our huge paraquet file into a iterable that has batches of 100,000 rows and load it into our database."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "afef2456",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-03T23:55:14.141738Z",
"start_time": "2023-12-03T23:55:14.124217Z"
}
},
"outputs": [],
"source": [
"import pandas as pd \n",
"import pyarrow.parquet as pq\n",
"from time import time"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c750d1d4",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-03T02:54:01.925350Z",
"start_time": "2023-12-03T02:54:01.661119Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<pyarrow._parquet.FileMetaData object at 0x7fed89ffa540>\n",
" created_by: parquet-cpp-arrow version 13.0.0\n",
" num_columns: 19\n",
" num_rows: 2846722\n",
" num_row_groups: 3\n",
" format_version: 2.6\n",
" serialized_size: 6357"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Read metadata \n",
"pq.read_metadata('yellow_tripdata_2023-09.parquet')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a970fcf0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-03T23:28:08.411945Z",
"start_time": "2023-12-03T23:28:08.177693Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"VendorID: int32\n",
"tpep_pickup_datetime: timestamp[us]\n",
"tpep_dropoff_datetime: timestamp[us]\n",
"passenger_count: int64\n",
"trip_distance: double\n",
"RatecodeID: int64\n",
"store_and_fwd_flag: large_string\n",
"PULocationID: int32\n",
"DOLocationID: int32\n",
"payment_type: int64\n",
"fare_amount: double\n",
"extra: double\n",
"mta_tax: double\n",
"tip_amount: double\n",
"tolls_amount: double\n",
"improvement_surcharge: double\n",
"total_amount: double\n",
"congestion_surcharge: double\n",
"Airport_fee: double"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Read file, read the table from file and check schema\n",
"file = pq.ParquetFile('yellow_tripdata_2023-09.parquet')\n",
"table = file.read()\n",
"table.schema"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43f6ea7e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-03T23:28:22.870376Z",
"start_time": "2023-12-03T23:28:22.563414Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 2846722 entries, 0 to 2846721\n",
"Data columns (total 19 columns):\n",
" # Column Dtype \n",
"--- ------ ----- \n",
" 0 VendorID int32 \n",
" 1 tpep_pickup_datetime datetime64[ns]\n",
" 2 tpep_dropoff_datetime datetime64[ns]\n",
" 3 passenger_count float64 \n",
" 4 trip_distance float64 \n",
" 5 RatecodeID float64 \n",
" 6 store_and_fwd_flag object \n",
" 7 PULocationID int32 \n",
" 8 DOLocationID int32 \n",
" 9 payment_type int64 \n",
" 10 fare_amount float64 \n",
" 11 extra float64 \n",
" 12 mta_tax float64 \n",
" 13 tip_amount float64 \n",
" 14 tolls_amount float64 \n",
" 15 improvement_surcharge float64 \n",
" 16 total_amount float64 \n",
" 17 congestion_surcharge float64 \n",
" 18 Airport_fee float64 \n",
"dtypes: datetime64[ns](2), float64(12), int32(3), int64(1), object(1)\n",
"memory usage: 380.1+ MB\n"
]
}
],
"source": [
"# Convert to pandas and check data \n",
"df = table.to_pandas()\n",
"df.info()"
]
},
{
"cell_type": "markdown",
"id": "ccf039a0",
"metadata": {},
"source": [
"We need to first create the connection to our postgres database. We can feed the connection information to generate the CREATE SQL query for the specific server. SQLAlchemy supports a variety of servers."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "44e701ae",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-03T22:50:25.811951Z",
"start_time": "2023-12-03T22:50:25.393987Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<sqlalchemy.engine.base.Connection at 0x7fed98ea3190>"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create an open SQL database connection object or a SQLAlchemy connectable\n",
"from sqlalchemy import create_engine\n",
"\n",
"engine = create_engine('postgresql://root:root@localhost:5432/ny_taxi')\n",
"engine.connect()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c96a1075",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-03T22:50:43.628727Z",
"start_time": "2023-12-03T22:50:43.442337Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"CREATE TABLE yellow_taxi_data (\n",
"\t\"VendorID\" INTEGER, \n",
"\ttpep_pickup_datetime TIMESTAMP WITHOUT TIME ZONE, \n",
"\ttpep_dropoff_datetime TIMESTAMP WITHOUT TIME ZONE, \n",
"\tpassenger_count FLOAT(53), \n",
"\ttrip_distance FLOAT(53), \n",
"\t\"RatecodeID\" FLOAT(53), \n",
"\tstore_and_fwd_flag TEXT, \n",
"\t\"PULocationID\" INTEGER, \n",
"\t\"DOLocationID\" INTEGER, \n",
"\tpayment_type BIGINT, \n",
"\tfare_amount FLOAT(53), \n",
"\textra FLOAT(53), \n",
"\tmta_tax FLOAT(53), \n",
"\ttip_amount FLOAT(53), \n",
"\ttolls_amount FLOAT(53), \n",
"\timprovement_surcharge FLOAT(53), \n",
"\ttotal_amount FLOAT(53), \n",
"\tcongestion_surcharge FLOAT(53), \n",
"\t\"Airport_fee\" FLOAT(53)\n",
")\n",
"\n",
"\n"
]
}
],
"source": [
"# Generate CREATE SQL statement from schema for validation\n",
"print(pd.io.sql.get_schema(df, name='yellow_taxi_data', con=engine))"
]
},
{
"cell_type": "markdown",
"id": "eca7f32d",
"metadata": {},
"source": [
"Datatypes for the table looks good! Since we used paraquet file the datasets seem to have been preserved. You may have to convert some datatypes so it is always good to do this check."
]
},
{
"cell_type": "markdown",
"id": "51a751ed",
"metadata": {},
"source": [
"## Finally inserting data\n",
"\n",
"There are 2,846,722 rows in our dataset. We are going to use the ```parquet_file.iter_batches()``` function to create batches of 100,000, convert them into pandas and then load it into the postgres database."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e20cec73",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-03T23:49:28.768786Z",
"start_time": "2023-12-03T23:49:28.689732Z"
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>VendorID</th>\n",
" <th>tpep_pickup_datetime</th>\n",
" <th>tpep_dropoff_datetime</th>\n",
" <th>passenger_count</th>\n",
" <th>trip_distance</th>\n",
" <th>RatecodeID</th>\n",
" <th>store_and_fwd_flag</th>\n",
" <th>PULocationID</th>\n",
" <th>DOLocationID</th>\n",
" <th>payment_type</th>\n",
" <th>fare_amount</th>\n",
" <th>extra</th>\n",
" <th>mta_tax</th>\n",
" <th>tip_amount</th>\n",
" <th>tolls_amount</th>\n",
" <th>improvement_surcharge</th>\n",
" <th>total_amount</th>\n",
" <th>congestion_surcharge</th>\n",
" <th>Airport_fee</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>2023-09-01 00:15:37</td>\n",
" <td>2023-09-01 00:20:21</td>\n",
" <td>1</td>\n",
" <td>0.80</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>163</td>\n",
" <td>230</td>\n",
" <td>2</td>\n",
" <td>6.5</td>\n",
" <td>3.5</td>\n",
" <td>0.5</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>11.50</td>\n",
" <td>2.5</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>2023-09-01 00:18:40</td>\n",
" <td>2023-09-01 00:30:28</td>\n",
" <td>2</td>\n",
" <td>2.34</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>236</td>\n",
" <td>233</td>\n",
" <td>1</td>\n",
" <td>14.2</td>\n",
" <td>1.0</td>\n",
" <td>0.5</td>\n",
" <td>2.00</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>21.20</td>\n",
" <td>2.5</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>2023-09-01 00:35:01</td>\n",
" <td>2023-09-01 00:39:04</td>\n",
" <td>1</td>\n",
" <td>1.62</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>162</td>\n",
" <td>236</td>\n",
" <td>1</td>\n",
" <td>8.6</td>\n",
" <td>1.0</td>\n",
" <td>0.5</td>\n",
" <td>2.00</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>15.60</td>\n",
" <td>2.5</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2</td>\n",
" <td>2023-09-01 00:45:45</td>\n",
" <td>2023-09-01 00:47:37</td>\n",
" <td>1</td>\n",
" <td>0.74</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>141</td>\n",
" <td>229</td>\n",
" <td>1</td>\n",
" <td>5.1</td>\n",
" <td>1.0</td>\n",
" <td>0.5</td>\n",
" <td>1.00</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>11.10</td>\n",
" <td>2.5</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2</td>\n",
" <td>2023-09-01 00:01:23</td>\n",
" <td>2023-09-01 00:38:05</td>\n",
" <td>1</td>\n",
" <td>9.85</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>138</td>\n",
" <td>230</td>\n",
" <td>1</td>\n",
" <td>45.0</td>\n",
" <td>6.0</td>\n",
" <td>0.5</td>\n",
" <td>17.02</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>73.77</td>\n",
" <td>2.5</td>\n",
" <td>1.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>99995</th>\n",
" <td>2</td>\n",
" <td>2023-09-02 09:55:17</td>\n",
" <td>2023-09-02 10:01:45</td>\n",
" <td>2</td>\n",
" <td>1.48</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>163</td>\n",
" <td>164</td>\n",
" <td>1</td>\n",
" <td>9.3</td>\n",
" <td>0.0</td>\n",
" <td>0.5</td>\n",
" <td>2.66</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>15.96</td>\n",
" <td>2.5</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>99996</th>\n",
" <td>2</td>\n",
" <td>2023-09-02 09:25:34</td>\n",
" <td>2023-09-02 09:55:20</td>\n",
" <td>3</td>\n",
" <td>17.49</td>\n",
" <td>2</td>\n",
" <td>N</td>\n",
" <td>132</td>\n",
" <td>164</td>\n",
" <td>1</td>\n",
" <td>70.0</td>\n",
" <td>0.0</td>\n",
" <td>0.5</td>\n",
" <td>24.28</td>\n",
" <td>6.94</td>\n",
" <td>1.0</td>\n",
" <td>106.97</td>\n",
" <td>2.5</td>\n",
" <td>1.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>99997</th>\n",
" <td>2</td>\n",
" <td>2023-09-02 09:57:55</td>\n",
" <td>2023-09-02 10:04:52</td>\n",
" <td>1</td>\n",
" <td>1.73</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>164</td>\n",
" <td>249</td>\n",
" <td>1</td>\n",
" <td>10.0</td>\n",
" <td>0.0</td>\n",
" <td>0.5</td>\n",
" <td>2.80</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>16.80</td>\n",
" <td>2.5</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>99998</th>\n",
" <td>2</td>\n",
" <td>2023-09-02 09:35:02</td>\n",
" <td>2023-09-02 09:43:28</td>\n",
" <td>1</td>\n",
" <td>1.32</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>113</td>\n",
" <td>170</td>\n",
" <td>1</td>\n",
" <td>10.0</td>\n",
" <td>0.0</td>\n",
" <td>0.5</td>\n",
" <td>4.20</td>\n",
" <td>0.00</td>\n",
" <td>1.0</td>\n",
" <td>18.20</td>\n",
" <td>2.5</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>99999</th>\n",
" <td>2</td>\n",
" <td>2023-09-02 09:46:09</td>\n",
" <td>2023-09-02 10:03:58</td>\n",
" <td>1</td>\n",
" <td>8.79</td>\n",
" <td>1</td>\n",
" <td>N</td>\n",
" <td>138</td>\n",
" <td>170</td>\n",
" <td>1</td>\n",
" <td>35.9</td>\n",
" <td>5.0</td>\n",
" <td>0.5</td>\n",
" <td>10.37</td>\n",
" <td>6.94</td>\n",
" <td>1.0</td>\n",
" <td>63.96</td>\n",
" <td>2.5</td>\n",
" <td>1.75</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>100000 rows × 19 columns</p>\n",
"</div>"
],
"text/plain": [
" VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count \\\n",
"0 1 2023-09-01 00:15:37 2023-09-01 00:20:21 1 \n",
"1 2 2023-09-01 00:18:40 2023-09-01 00:30:28 2 \n",
"2 2 2023-09-01 00:35:01 2023-09-01 00:39:04 1 \n",
"3 2 2023-09-01 00:45:45 2023-09-01 00:47:37 1 \n",
"4 2 2023-09-01 00:01:23 2023-09-01 00:38:05 1 \n",
"... ... ... ... ... \n",
"99995 2 2023-09-02 09:55:17 2023-09-02 10:01:45 2 \n",
"99996 2 2023-09-02 09:25:34 2023-09-02 09:55:20 3 \n",
"99997 2 2023-09-02 09:57:55 2023-09-02 10:04:52 1 \n",
"99998 2 2023-09-02 09:35:02 2023-09-02 09:43:28 1 \n",
"99999 2 2023-09-02 09:46:09 2023-09-02 10:03:58 1 \n",
"\n",
" trip_distance RatecodeID store_and_fwd_flag PULocationID \\\n",
"0 0.80 1 N 163 \n",
"1 2.34 1 N 236 \n",
"2 1.62 1 N 162 \n",
"3 0.74 1 N 141 \n",
"4 9.85 1 N 138 \n",
"... ... ... ... ... \n",
"99995 1.48 1 N 163 \n",
"99996 17.49 2 N 132 \n",
"99997 1.73 1 N 164 \n",
"99998 1.32 1 N 113 \n",
"99999 8.79 1 N 138 \n",
"\n",
" DOLocationID payment_type fare_amount extra mta_tax tip_amount \\\n",
"0 230 2 6.5 3.5 0.5 0.00 \n",
"1 233 1 14.2 1.0 0.5 2.00 \n",
"2 236 1 8.6 1.0 0.5 2.00 \n",
"3 229 1 5.1 1.0 0.5 1.00 \n",
"4 230 1 45.0 6.0 0.5 17.02 \n",
"... ... ... ... ... ... ... \n",
"99995 164 1 9.3 0.0 0.5 2.66 \n",
"99996 164 1 70.0 0.0 0.5 24.28 \n",
"99997 249 1 10.0 0.0 0.5 2.80 \n",
"99998 170 1 10.0 0.0 0.5 4.20 \n",
"99999 170 1 35.9 5.0 0.5 10.37 \n",
"\n",
" tolls_amount improvement_surcharge total_amount \\\n",
"0 0.00 1.0 11.50 \n",
"1 0.00 1.0 21.20 \n",
"2 0.00 1.0 15.60 \n",
"3 0.00 1.0 11.10 \n",
"4 0.00 1.0 73.77 \n",
"... ... ... ... \n",
"99995 0.00 1.0 15.96 \n",
"99996 6.94 1.0 106.97 \n",
"99997 0.00 1.0 16.80 \n",
"99998 0.00 1.0 18.20 \n",
"99999 6.94 1.0 63.96 \n",
"\n",
" congestion_surcharge Airport_fee \n",
"0 2.5 0.00 \n",
"1 2.5 0.00 \n",
"2 2.5 0.00 \n",
"3 2.5 0.00 \n",
"4 2.5 1.75 \n",
"... ... ... \n",
"99995 2.5 0.00 \n",
"99996 2.5 1.75 \n",
"99997 2.5 0.00 \n",
"99998 2.5 0.00 \n",
"99999 2.5 1.75 \n",
"\n",
"[100000 rows x 19 columns]"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#This part is for testing\n",
"\n",
"\n",
"# Creating batches of 100,000 for the paraquet file\n",
"batches_iter = file.iter_batches(batch_size=100000)\n",
"batches_iter\n",
"\n",
"# Take the first batch for testing\n",
"df = next(batches_iter).to_pandas()\n",
"df\n",
"\n",
"# Creating just the table in postgres\n",
"#df.head(0).to_sql(name='ny_taxi_data',con=engine, if_exists='replace')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7fdda025",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-04T00:08:07.651559Z",
"start_time": "2023-12-04T00:02:35.940526Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"inserting batch 1...\n",
"inserted! time taken 12.916 seconds.\n",
"\n",
"inserting batch 2...\n",
"inserted! time taken 11.782 seconds.\n",
"\n",
"inserting batch 3...\n",
"inserted! time taken 11.854 seconds.\n",
"\n",
"inserting batch 4...\n",
"inserted! time taken 11.753 seconds.\n",
"\n",
"inserting batch 5...\n",
"inserted! time taken 12.034 seconds.\n",
"\n",
"inserting batch 6...\n",
"inserted! time taken 11.742 seconds.\n",
"\n",
"inserting batch 7...\n",
"inserted! time taken 12.351 seconds.\n",
"\n",
"inserting batch 8...\n",
"inserted! time taken 11.052 seconds.\n",
"\n",
"inserting batch 9...\n",
"inserted! time taken 12.167 seconds.\n",
"\n",
"inserting batch 10...\n",
"inserted! time taken 12.335 seconds.\n",
"\n",
"inserting batch 11...\n",
"inserted! time taken 11.375 seconds.\n",
"\n",
"inserting batch 12...\n",
"inserted! time taken 10.937 seconds.\n",
"\n",
"inserting batch 13...\n",
"inserted! time taken 12.208 seconds.\n",
"\n",
"inserting batch 14...\n",
"inserted! time taken 11.542 seconds.\n",
"\n",
"inserting batch 15...\n",
"inserted! time taken 11.460 seconds.\n",
"\n",
"inserting batch 16...\n",
"inserted! time taken 11.868 seconds.\n",
"\n",
"inserting batch 17...\n",
"inserted! time taken 11.162 seconds.\n",
"\n",
"inserting batch 18...\n",
"inserted! time taken 11.774 seconds.\n",
"\n",
"inserting batch 19...\n",
"inserted! time taken 11.772 seconds.\n",
"\n",
"inserting batch 20...\n",
"inserted! time taken 10.971 seconds.\n",
"\n",
"inserting batch 21...\n",
"inserted! time taken 11.483 seconds.\n",
"\n",
"inserting batch 22...\n",
"inserted! time taken 11.718 seconds.\n",
"\n",
"inserting batch 23...\n",
"inserted! time taken 11.628 seconds.\n",
"\n",
"inserting batch 24...\n",
"inserted! time taken 11.622 seconds.\n",
"\n",
"inserting batch 25...\n",
"inserted! time taken 11.236 seconds.\n",
"\n",
"inserting batch 26...\n",
"inserted! time taken 11.258 seconds.\n",
"\n",
"inserting batch 27...\n",
"inserted! time taken 11.746 seconds.\n",
"\n",
"inserting batch 28...\n",
"inserted! time taken 10.031 seconds.\n",
"\n",
"inserting batch 29...\n",
"inserted! time taken 5.077 seconds.\n",
"\n",
"Completed! Total time taken was 331.674 seconds for 29 batches.\n"
]
}
],
"source": [
"# Insert values into the table \n",
"t_start = time()\n",
"count = 0\n",
"for batch in file.iter_batches(batch_size=100000):\n",
" count+=1\n",
" batch_df = batch.to_pandas()\n",
" print(f'inserting batch {count}...')\n",
" b_start = time()\n",
" \n",
" batch_df.to_sql(name='ny_taxi_data',con=engine, if_exists='append')\n",
" b_end = time()\n",
" print(f'inserted! time taken {b_end-b_start:10.3f} seconds.\\n')\n",
" \n",
"t_end = time() \n",
"print(f'Completed! Total time taken was {t_end-t_start:10.3f} seconds for {count} batches.') "
]
},
{
"cell_type": "markdown",
"id": "a7c102be",
"metadata": {},
"source": [
"## Extra bit\n",
"\n",
"While trying to do the SQL Refresher, there was a need to add a lookup zones table but the file is in ```.csv``` format. \n",
"\n",
"Let's code to handle both ```.csv``` and ```.paraquet``` files!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a643d171",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-05T20:59:29.236458Z",
"start_time": "2023-12-05T20:59:28.551221Z"
}
},
"outputs": [],
"source": [
"from time import time\n",
"import pandas as pd \n",
"import pyarrow.parquet as pq\n",
"from sqlalchemy import create_engine"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62c9040a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-05T21:18:11.346552Z",
"start_time": "2023-12-05T21:18:11.337475Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'yellow_tripdata_2023-09.parquet'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"url = 'https://d37ci6vzurychx.cloudfront.net/misc/taxi+_zone_lookup.csv'\n",
"url = 'https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2023-09.parquet'\n",
"\n",
"file_name = url.rsplit('/', 1)[-1].strip()\n",
"file_name"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e495fa96",
"metadata": {
"ExecuteTime": {
"end_time": "2023-12-05T21:18:33.001561Z",
"start_time": "2023-12-05T21:18:32.844872Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"oh yea\n"
]
}
],
"source": [
"if '.csv' in file_name:\n",
" print('yay') \n",
" df = pd.read_csv(file_name, nrows=10)\n",
" df_iter = pd.read_csv(file_name, iterator=True, chunksize=100000)\n",
"elif '.parquet' in file_name:\n",
" print('oh yea')\n",
" file = pq.ParquetFile(file_name)\n",
" df = next(file.iter_batches(batch_size=10)).to_pandas()\n",
" df_iter = file.iter_batches(batch_size=100000)\n",
"else: \n",
" print('Error. Only .csv or .parquet files allowed.')\n",
" sys.exit() "
]
},
{
"cell_type": "markdown",
"id": "7556748f",
"metadata": {},
"source": [
"This code is a rough code and seems to be working. The cleaned up version will be in `data-loading-parquet.py` file."
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,86 @@
#Cleaned up version of data-loading.ipynb
import argparse, os, sys
from time import time
import pandas as pd
import pyarrow.parquet as pq
from sqlalchemy import create_engine
def main(params):
user = params.user
password = params.password
host = params.host
port = params.port
db = params.db
tb = params.tb
url = params.url
# Get the name of the file from url
file_name = url.rsplit('/', 1)[-1].strip()
print(f'Downloading {file_name} ...')
# Download file from url
os.system(f'curl {url.strip()} -o {file_name}')
print('\n')
# Create SQL engine
engine = create_engine(f'postgresql://{user}:{password}@{host}:{port}/{db}')
# Read file based on csv or parquet
if '.csv' in file_name:
df = pd.read_csv(file_name, nrows=10)
df_iter = pd.read_csv(file_name, iterator=True, chunksize=100000)
elif '.parquet' in file_name:
file = pq.ParquetFile(file_name)
df = next(file.iter_batches(batch_size=10)).to_pandas()
df_iter = file.iter_batches(batch_size=100000)
else:
print('Error. Only .csv or .parquet files allowed.')
sys.exit()
# Create the table
df.head(0).to_sql(name=tb, con=engine, if_exists='replace')
# Insert values
t_start = time()
count = 0
for batch in df_iter:
count+=1
if '.parquet' in file_name:
batch_df = batch.to_pandas()
else:
batch_df = batch
print(f'inserting batch {count}...')
b_start = time()
batch_df.to_sql(name=tb, con=engine, if_exists='append')
b_end = time()
print(f'inserted! time taken {b_end-b_start:10.3f} seconds.\n')
t_end = time()
print(f'Completed! Total time taken was {t_end-t_start:10.3f} seconds for {count} batches.')
if __name__ == '__main__':
#Parsing arguments
parser = argparse.ArgumentParser(description='Loading data from .paraquet file link to a Postgres datebase.')
parser.add_argument('--user', help='Username for Postgres.')
parser.add_argument('--password', help='Password to the username for Postgres.')
parser.add_argument('--host', help='Hostname for Postgres.')
parser.add_argument('--port', help='Port for Postgres connection.')
parser.add_argument('--db', help='Databse name for Postgres')
parser.add_argument('--tb', help='Destination table name for Postgres.')
parser.add_argument('--url', help='URL for .paraquet file.')
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,215 @@
# Introduction
* [![](https://markdown-videos-api.jorgenkh.no/youtube/AtRhA-NfS24)](https://www.youtube.com/watch?v=AtRhA-NfS24&list=PL3MmuxUbc_hKihpnNQ9qtTmWYy26bPrSb&index=3)
* [Slides](https://www.slideshare.net/AlexeyGrigorev/data-engineering-zoomcamp-introduction)
* Overview of [Architecture](https://github.com/DataTalksClub/data-engineering-zoomcamp#overview), [Technologies](https://github.com/DataTalksClub/data-engineering-zoomcamp#technologies) & [Pre-Requisites](https://github.com/DataTalksClub/data-engineering-zoomcamp#prerequisites)
We suggest watching videos in the same order as in this document.
The last video (setting up the environment) is optional, but you can check it earlier
if you have troubles setting up the environment and following along with the videos.
# Docker + Postgres
[Code](2_docker_sql)
## :movie_camera: Introduction to Docker
[![](https://markdown-videos-api.jorgenkh.no/youtube/EYNwNlOrpr0)](https://youtu.be/EYNwNlOrpr0&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=4)
* Why do we need Docker
* Creating a simple "data pipeline" in Docker
## :movie_camera: Ingesting NY Taxi Data to Postgres
[![](https://markdown-videos-api.jorgenkh.no/youtube/2JM-ziJt0WI)](https://youtu.be/2JM-ziJt0WI&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=5)
* Running Postgres locally with Docker
* Using `pgcli` for connecting to the database
* Exploring the NY Taxi dataset
* Ingesting the data into the database
> [!TIP]
>if you have problems with `pgcli`, check this video for an alternative way to connect to your database in jupyter notebook and pandas.
>
> [![](https://markdown-videos-api.jorgenkh.no/youtube/3IkfkTwqHx4)](https://youtu.be/3IkfkTwqHx4&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=6)
## :movie_camera: Connecting pgAdmin and Postgres
[![](https://markdown-videos-api.jorgenkh.no/youtube/hCAIVe9N0ow)](https://youtu.be/hCAIVe9N0ow&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=7)
* The pgAdmin tool
* Docker networks
> [!IMPORTANT]
>The UI for PgAdmin 4 has changed, please follow the below steps for creating a server:
>
>* After login to PgAdmin, right click Servers in the left sidebar.
>* Click on Register.
>* Click on Server.
>* The remaining steps to create a server are the same as in the videos.
## :movie_camera: Putting the ingestion script into Docker
[![](https://markdown-videos-api.jorgenkh.no/youtube/B1WwATwf-vY)](https://youtu.be/B1WwATwf-vY&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=8)
* Converting the Jupyter notebook to a Python script
* Parametrizing the script with argparse
* Dockerizing the ingestion script
## :movie_camera: Running Postgres and pgAdmin with Docker-Compose
[![](https://markdown-videos-api.jorgenkh.no/youtube/hKI6PkPhpa0)](https://youtu.be/hKI6PkPhpa0&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=9)
* Why do we need Docker-compose
* Docker-compose YAML file
* Running multiple containers with `docker-compose up`
## :movie_camera: SQL refresher
[![](https://markdown-videos-api.jorgenkh.no/youtube/QEcps_iskgg)](https://youtu.be/QEcps_iskgg&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=10)
* Adding the Zones table
* Inner joins
* Basic data quality checks
* Left, Right and Outer joins
* Group by
## :movie_camera: Optional: Docker Networking and Port Mapping
> [!TIP]
> Optional: If you have some problems with docker networking, check **Port Mapping and Networks in Docker video**.
[![](https://markdown-videos-api.jorgenkh.no/youtube/tOr4hTsHOzU)](https://youtu.be/tOr4hTsHOzU&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=5)
* Docker networks
* Port forwarding to the host environment
* Communicating between containers in the network
* `.dockerignore` file
## :movie_camera: Optional: Walk-Through on WSL
> [!TIP]
> Optional: If you are willing to do the steps from "Ingesting NY Taxi Data to Postgres" till "Running Postgres and pgAdmin with Docker-Compose" with Windows Subsystem Linux please check **Docker Module Walk-Through on WSL**.
[![](https://markdown-videos-api.jorgenkh.no/youtube/Mv4zFm2AwzQ)](https://youtu.be/Mv4zFm2AwzQ&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=33)
# GCP
## :movie_camera: Introduction to GCP (Google Cloud Platform)
[![](https://markdown-videos-api.jorgenkh.no/youtube/18jIzE41fJ4)](https://youtu.be/18jIzE41fJ4&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=3)
# Terraform
[Code](1_terraform_gcp)
## :movie_camera: Introduction Terraform: Concepts and Overview, a primer
[![](https://markdown-videos-api.jorgenkh.no/youtube/s2bOYDCKl_M)](https://youtu.be/s2bOYDCKl_M&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=11)
* [Companion Notes](1_terraform_gcp)
## :movie_camera: Terraform Basics: Simple one file Terraform Deployment
[![](https://markdown-videos-api.jorgenkh.no/youtube/Y2ux7gq3Z0o)](https://youtu.be/Y2ux7gq3Z0o&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=12)
* [Companion Notes](1_terraform_gcp)
## :movie_camera: Deployment with a Variables File
[![](https://markdown-videos-api.jorgenkh.no/youtube/PBi0hHjLftk)](https://youtu.be/PBi0hHjLftk&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=13)
* [Companion Notes](1_terraform_gcp)
## Configuring terraform and GCP SDK on Windows
* [Instructions](1_terraform_gcp/windows.md)
# Environment setup
For the course you'll need:
* Python 3 (e.g. installed with Anaconda)
* Google Cloud SDK
* Docker with docker-compose
* Terraform
* Git account
> [!NOTE]
>If you have problems setting up the environment, you can check these videos.
>
>If you already have a working coding environment on local machine, these are optional. And only need to select one method. But if you have time to learn it now, these would be helpful if the local environment suddenly do not work one day.
## :movie_camera: GCP Cloud VM
### Setting up the environment on cloud VM
[![](https://markdown-videos-api.jorgenkh.no/youtube/ae-CV2KfoN0)](https://youtu.be/ae-CV2KfoN0&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=14)
* Generating SSH keys
* Creating a virtual machine on GCP
* Connecting to the VM with SSH
* Installing Anaconda
* Installing Docker
* Creating SSH `config` file
* Accessing the remote machine with VS Code and SSH remote
* Installing docker-compose
* Installing pgcli
* Port-forwarding with VS code: connecting to pgAdmin and Jupyter from the local computer
* Installing Terraform
* Using `sftp` for putting the credentials to the remote machine
* Shutting down and removing the instance
## :movie_camera: GitHub Codespaces
### Preparing the environment with GitHub Codespaces
[![](https://markdown-videos-api.jorgenkh.no/youtube/XOSUt8Ih3zA)](https://youtu.be/XOSUt8Ih3zA&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=15)
# Homework
* [Homework](../cohorts/2024/01-docker-terraform/homework.md)
# Community notes
Did you take notes? You can share them here
* [Notes from Alvaro Navas](https://github.com/ziritrion/dataeng-zoomcamp/blob/main/notes/1_intro.md)
* [Notes from Abd](https://itnadigital.notion.site/Week-1-Introduction-f18de7e69eb4453594175d0b1334b2f4)
* [Notes from Aaron](https://github.com/ABZ-Aaron/DataEngineerZoomCamp/blob/master/week_1_basics_n_setup/README.md)
* [Notes from Faisal](https://github.com/FaisalMohd/data-engineering-zoomcamp/blob/main/week_1_basics_n_setup/Notes/DE%20Zoomcamp%20Week-1.pdf)
* [Michael Harty's Notes](https://github.com/mharty3/data_engineering_zoomcamp_2022/tree/main/week01)
* [Blog post from Isaac Kargar](https://kargarisaac.github.io/blog/data%20engineering/jupyter/2022/01/18/data-engineering-w1.html)
* [Handwritten Notes By Mahmoud Zaher](https://github.com/zaherweb/DataEngineering/blob/master/week%201.pdf)
* [Notes from Candace Williams](https://teacherc.github.io/data-engineering/2023/01/18/zoomcamp1.html)
* [Notes from Marcos Torregrosa](https://www.n4gash.com/2023/data-engineering-zoomcamp-semana-1/)
* [Notes from Vincenzo Galante](https://binchentso.notion.site/Data-Talks-Club-Data-Engineering-Zoomcamp-8699af8e7ff94ec49e6f9bdec8eb69fd)
* [Notes from Victor Padilha](https://github.com/padilha/de-zoomcamp/tree/master/week1)
* [Notes from froukje](https://github.com/froukje/de-zoomcamp/blob/main/week_1_basics_n_setup/notes/notes_week_01.md)
* [Notes from adamiaonr](https://github.com/adamiaonr/data-engineering-zoomcamp/blob/main/week_1_basics_n_setup/2_docker_sql/NOTES.md)
* [Notes from Xia He-Bleinagel](https://xiahe-bleinagel.com/2023/01/week-1-data-engineering-zoomcamp-notes/)
* [Notes from Balaji](https://github.com/Balajirvp/DE-Zoomcamp/blob/main/Week%201/Detailed%20Week%201%20Notes.ipynb)
* [Notes from Erik](https://twitter.com/ehub96/status/1621351266281730049)
* [Notes by Alain Boisvert](https://github.com/boisalai/de-zoomcamp-2023/blob/main/week1.md)
* Notes on [Docker, Docker Compose, and setting up a proper Python environment](https://medium.com/@verazabeida/zoomcamp-2023-week-1-f4f94cb360ae), by Vera
* [Setting up the development environment on Google Virtual Machine](https://itsadityagupta.hashnode.dev/setting-up-the-development-environment-on-google-virtual-machine), blog post by Aditya Gupta
* [Notes from Zharko Cekovski](https://www.zharconsulting.com/contents/data/data-engineering-bootcamp-2024/week-1-postgres-docker-and-ingestion-scripts/)
* [2024 Module-01 Walkthough video by ellacharmed on youtube](https://youtu.be/VUZshlVAnk4)
* [2024 Companion Module Walkthough slides by ellacharmed](https://github.com/ellacharmed/data-engineering-zoomcamp/blob/ella2024/cohorts/2024/01-docker-terraform/walkthrough-01.pdf)
* [2024 Module-01 Environment setup video by ellacharmed on youtube](https://youtu.be/Zce_Hd37NGs)
* [Docker Notes by Linda](https://github.com/inner-outer-space/de-zoomcamp-2024/blob/main/1a-docker_sql/readme.md) • [Terraform Notes by Linda](https://github.com/inner-outer-space/de-zoomcamp-2024/blob/main/1b-terraform_gcp/readme.md)
* [Notes from Hammad Tariq](https://github.com/hamad-tariq/HammadTariq-ZoomCamp2024/blob/9c8b4908416eb8cade3d7ec220e7664c003e9b11/week_1_basics_n_setup/README.md)
* [Hung's Notes](https://hung.bearblog.dev/docker/) & [Docker Cheatsheet](https://github.com/HangenYuu/docker-cheatsheet)
* [Kemal's Notes](https://github.com/kemaldahha/data-engineering-course/blob/main/week_1_notes.md)
* [Notes from Manuel Guerra (Windows+WSL2 Environment)](https://github.com/ManuelGuerra1987/data-engineering-zoomcamp-notes/blob/main/1_Containerization-and-Infrastructure-as-Code/README.md)
* [Notes from Horeb SEIDOU](https://www.notion.so/Week-1-Containerization-and-Infrastructure-as-Code-15729780dc4a80a08288e497ba937a37?pvs=4)
* Add your notes above this line

View File

@ -0,0 +1,306 @@
# Week 2: Workflow Orchestration
Welcome to Week 2 of the Data Engineering Zoomcamp! This week, well dive into workflow orchestration using [Kestra](https://go.kestra.io/de-zoomcamp/github).
Kestra is an open-source, event-driven orchestration platform that simplifies building both scheduled and event-driven workflows. By adopting Infrastructure as Code practices for data and process orchestration, Kestra enables you to build reliable workflows with just a few lines of YAML.
> [!NOTE]
>You can find all videos for this week in this [YouTube Playlist](https://go.kestra.io/de-zoomcamp/yt-playlist).
---
# Course Structure
## 1. Conceptual Material: Introduction to Orchestration and Kestra
In this section, youll learn the foundations of workflow orchestration, its importance, and how Kestra fits into the orchestration landscape.
### Videos
- **2.2.1 - Introduction to Workflow Orchestration**
[![2.2.1 - Workflow Orchestration Introduction](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2FNp6QmmcgLCs)](https://youtu.be/Np6QmmcgLCs)
- **2.2.2 - Learn the Concepts of Kestra**
[![Learn Kestra](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2Fo79n-EVpics)](https://youtu.be/o79n-EVpics)
### Resources
- [Quickstart Guide](https://go.kestra.io/de-zoomcamp/quickstart)
- [Install Kestra with Docker Compose](https://go.kestra.io/de-zoomcamp/docker-compose)
- [Tutorial](https://go.kestra.io/de-zoomcamp/tutorial)
- [What is an Orchestrator?](https://go.kestra.io/de-zoomcamp/what-is-an-orchestrator)
---
## 2. Hands-On Coding Project: Build Data Pipelines with Kestra
This week, we're gonna build ETL pipelines for Yellow and Green Taxi data from NYCs Taxi and Limousine Commission (TLC). You will:
1. Extract data from [CSV files](https://github.com/DataTalksClub/nyc-tlc-data/releases).
2. Load it into Postgres or Google Cloud (GCS + BigQuery).
3. Explore scheduling and backfilling workflows.
### File Structure
The project is organized as follows:
```
.
├── flows/
│ ├── 01_getting_started_data_pipeline.yaml
│ ├── 02_postgres_taxi.yaml
│ ├── 02_postgres_taxi_scheduled.yaml
│ ├── 03_postgres_dbt.yaml
│ ├── 04_gcp_kv.yaml
│ ├── 05_gcp_setup.yaml
│ ├── 06_gcp_taxi.yaml
│ ├── 06_gcp_taxi_scheduled.yaml
│ └── 07_gcp_dbt.yaml
```
### Setup Kestra
We'll set up Kestra using Docker Compose containing one container for the Kestra server and another for the Postgres database:
```bash
cd 02-workflow-orchestration/
docker compose up -d
```
Once the container starts, you can access the Kestra UI at [http://localhost:8080](http://localhost:8080).
If you prefer to add flows programmatically using Kestra's API, run the following commands:
```bash
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/01_getting_started_data_pipeline.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/02_postgres_taxi.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/02_postgres_taxi_scheduled.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/03_postgres_dbt.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/04_gcp_kv.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/05_gcp_setup.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/06_gcp_taxi.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/06_gcp_taxi_scheduled.yaml
curl -X POST http://localhost:8080/api/v1/flows/import -F fileUpload=@flows/07_gcp_dbt.yaml
```
---
## 3. ETL Pipelines in Kestra: Detailed Walkthrough
### Getting Started Pipeline
This introductory flow is added just to demonstrate a simple data pipeline which extracts data via HTTP REST API, transforms that data in Python and then queries it using DuckDB.
### Videos
- **2.2.3 - Create an ETL Pipeline with Postgres in Kestra**
[![Create an ETL Pipeline with Postgres in Kestra](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2FOkfLX28Ecjg%3Fsi%3DvKbIyWo1TtjpNnvt)](https://youtu.be/OkfLX28Ecjg?si=vKbIyWo1TtjpNnvt)
- **2.2.4 - Manage Scheduling and Backfills using Postgres in Kestra**
[![Manage Scheduling and Backfills using Postgres in Kestra](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2F_-li_z97zog%3Fsi%3DG6jZbkfJb3GAyqrd)](https://youtu.be/_-li_z97zog?si=G6jZbkfJb3GAyqrd)
- **2.2.5 - Transform Data with dbt and Postgres in Kestra**
[![Transform Data with dbt and Postgres in Kestra](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2FZLp2N6p2JjE%3Fsi%3DtWhcvq5w4lO8v1_p)](https://youtu.be/ZLp2N6p2JjE?si=tWhcvq5w4lO8v1_p)
```mermaid
graph LR
Extract[Extract Data via HTTP REST API] --> Transform[Transform Data in Python]
Transform --> Query[Query Data with DuckDB]
```
Add the flow [`01_getting_started_data_pipeline.yaml`](flows/01_getting_started_data_pipeline.yaml) from the UI if you haven't already and execute it to see the results. Inspect the Gantt and Logs tabs to understand the flow execution.
### Local DB: Load Taxi Data to Postgres
Before we start loading data to GCP, we'll first play with the Yellow and Green Taxi data using a local Postgres database running in a Docker container. We'll create a new Postgres database for these examples using this [Docker Compose file](postgres/docker-compose.yml). Download it into a new directory, navigate to it and run the following command to start it:
```bash
docker compose up -d
```
The flow will extract CSV data partitioned by year and month, create tables, load data to the monthly table, and finally merge the data to the final destination table.
```mermaid
graph LR
Start[Select Year & Month] --> SetLabel[Set Labels]
SetLabel --> Extract[Extract CSV Data]
Extract -->|Taxi=Yellow| YellowFinalTable[Create Yellow Final Table]:::yellow
Extract -->|Taxi=Green| GreenFinalTable[Create Green Final Table]:::green
YellowFinalTable --> YellowMonthlyTable[Create Yellow Monthly Table]:::yellow
GreenFinalTable --> GreenMonthlyTable[Create Green Monthly Table]:::green
YellowMonthlyTable --> YellowCopyIn[Load Data to Monthly Table]:::yellow
GreenMonthlyTable --> GreenCopyIn[Load Data to Monthly Table]:::green
YellowCopyIn --> YellowMerge[Merge Yellow Data]:::yellow
GreenCopyIn --> GreenMerge[Merge Green Data]:::green
classDef yellow fill:#FFD700,stroke:#000,stroke-width:1px;
classDef green fill:#32CD32,stroke:#000,stroke-width:1px;
```
The flow code: [`02_postgres_taxi.yaml`](flows/02_postgres_taxi.yaml).
> [!NOTE]
> The NYC Taxi and Limousine Commission (TLC) Trip Record Data provided on the [nyc.gov](https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page) website is currently available only in a Parquet format, but this is NOT the dataset we're going to use in this course. For the purpose of this course, we'll use the **CSV files** available [here on GitHub](https://github.com/DataTalksClub/nyc-tlc-data/releases). This is because the Parquet format can be challenging to understand by newcomers, and we want to make the course as accessible as possible — the CSV format can be easily introspected using tools like Excel or Google Sheets, or even a simple text editor.
### Local DB: Learn Scheduling and Backfills
We can now schedule the same pipeline shown above to run daily at 9 AM UTC. We'll also demonstrate how to backfill the data pipeline to run on historical data.
Note: given the large dataset, we'll backfill only data for the green taxi dataset for the year 2019.
The flow code: [`02_postgres_taxi_scheduled.yaml`](flows/02_postgres_taxi_scheduled.yaml).
### Local DB: Orchestrate dbt Models
Now that we have raw data ingested into a local Postgres database, we can use dbt to transform the data into meaningful insights. The flow will sync the dbt models from Git to Kestra and run the `dbt build` command to build the models.
```mermaid
graph LR
Start[Select dbt command] --> Sync[Sync Namespace Files]
Sync --> DbtBuild[Run dbt CLI]
```
The flow code: [`03_postgres_dbt.yaml`](flows/03_postgres_dbt.yaml).
### Resources
- [pgAdmin Download](https://www.pgadmin.org/download/)
- [Postgres DB Docker Compose](postgres/docker-compose.yml)
---
## 4. ETL Pipelines in Kestra: Google Cloud Platform
Now that you've learned how to build ETL pipelines locally using Postgres, we are ready to move to the cloud. In this section, we'll load the same Yellow and Green Taxi data to Google Cloud Platform (GCP) using:
1. Google Cloud Storage (GCS) as a data lake
2. BigQuery as a data warehouse.
### Videos
- **2.2.6 - Create an ETL Pipeline with GCS and BigQuery in Kestra**
[![Create an ETL Pipeline with BigQuery in Kestra](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2FnKqjjLJ7YXs)](https://youtu.be/nKqjjLJ7YXs)
- **2.2.7 - Manage Scheduling and Backfills using BigQuery in Kestra**
[![Manage Scheduling and Backfills using BigQuery in Kestra](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2FDoaZ5JWEkH0)](https://youtu.be/DoaZ5JWEkH0)
- **2.2.8 - Transform Data with dbt and BigQuery in Kestra**
[![Transform Data with dbt and BigQuery in Kestra](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2FeF_EdV4A1Wk)](https://youtu.be/eF_EdV4A1Wk)
### Setup Google Cloud Platform (GCP)
Before we start loading data to GCP, we need to set up the Google Cloud Platform.
First, adjust the following flow [`04_gcp_kv.yaml`](flows/04_gcp_kv.yaml) to include your service account, GCP project ID, BigQuery dataset and GCS bucket name (_along with their location_) as KV Store values:
- GCP_CREDS
- GCP_PROJECT_ID
- GCP_LOCATION
- GCP_BUCKET_NAME
- GCP_DATASET.
> [!WARNING]
> The `GCP_CREDS` service account contains sensitive information. Ensure you keep it secure and do not commit it to Git. Keep it as secure as your passwords.
### Create GCP Resources
If you haven't already created the GCS bucket and BigQuery dataset in the first week of the course, you can use this flow to create them: [`05_gcp_setup.yaml`](flows/05_gcp_setup.yaml).
### GCP Workflow: Load Taxi Data to BigQuery
```mermaid
graph LR
SetLabel[Set Labels] --> Extract[Extract CSV Data]
Extract --> UploadToGCS[Upload Data to GCS]
UploadToGCS -->|Taxi=Yellow| BQYellowTripdata[Main Yellow Tripdata Table]:::yellow
UploadToGCS -->|Taxi=Green| BQGreenTripdata[Main Green Tripdata Table]:::green
BQYellowTripdata --> BQYellowTableExt[External Table]:::yellow
BQGreenTripdata --> BQGreenTableExt[External Table]:::green
BQYellowTableExt --> BQYellowTableTmp[Monthly Table]:::yellow
BQGreenTableExt --> BQGreenTableTmp[Monthly Table]:::green
BQYellowTableTmp --> BQYellowMerge[Merge to Main Table]:::yellow
BQGreenTableTmp --> BQGreenMerge[Merge to Main Table]:::green
BQYellowMerge --> PurgeFiles[Purge Files]
BQGreenMerge --> PurgeFiles[Purge Files]
classDef yellow fill:#FFD700,stroke:#000,stroke-width:1px;
classDef green fill:#32CD32,stroke:#000,stroke-width:1px;
```
The flow code: [`06_gcp_taxi.yaml`](flows/06_gcp_taxi.yaml).
### GCP Workflow: Schedule and Backfill Full Dataset
We can now schedule the same pipeline shown above to run daily at 9 AM UTC for the green dataset and at 10 AM UTC for the yellow dataset. You can backfill historical data directly from the Kestra UI.
Since we now process data in a cloud environment with infinitely scalable storage and compute, we can backfill the entire dataset for both the yellow and green taxi data without the risk of running out of resources on our local machine.
The flow code: [`06_gcp_taxi_scheduled.yaml`](flows/06_gcp_taxi_scheduled.yaml).
### GCP Workflow: Orchestrate dbt Models
Now that we have raw data ingested into BigQuery, we can use dbt to transform that data. The flow will sync the dbt models from Git to Kestra and run the `dbt build` command to build the models:
```mermaid
graph LR
Start[Select dbt command] --> Sync[Sync Namespace Files]
Sync --> Build[Run dbt Build Command]
```
The flow code: [`07_gcp_dbt.yaml`](flows/07_gcp_dbt.yaml).
---
## 5. Bonus: Deploy to the Cloud
Now that we've got our ETL pipeline working both locally and in the cloud, we can deploy Kestra to the cloud so it can continue to orchestrate our ETL pipelines monthly with our configured schedules, We'll cover how you can install Kestra on Google Cloud in Production, and automatically sync and deploy your workflows from a Git repository.
### Videos
- **2.2.9 - Deploy Workflows to the Cloud with Git**
[![Deploy Workflows to the Cloud with Git](https://markdown-videos-api.jorgenkh.no/url?url=https%3A%2F%2Fyoutu.be%2Fl-wC71tI3co)](https://youtu.be/l-wC71tI3co)
Resources
- [Install Kestra on Google Cloud](https://go.kestra.io/de-zoomcamp/gcp-install)
- [Moving from Development to Production](https://go.kestra.io/de-zoomcamp/dev-to-prod)
- [Using Git in Kestra](https://go.kestra.io/de-zoomcamp/git)
- [Deploy Flows with GitHub Actions](https://go.kestra.io/de-zoomcamp/deploy-github-actions)
## 6. Additional Resources 📚
- Check [Kestra Docs](https://go.kestra.io/de-zoomcamp/docs)
- Explore our [Blueprints](https://go.kestra.io/de-zoomcamp/blueprints) library
- Browse over 600 [plugins](https://go.kestra.io/de-zoomcamp/plugins) available in Kestra
- Give us a star on [GitHub](https://go.kestra.io/de-zoomcamp/github)
- Join our [Slack community](https://go.kestra.io/de-zoomcamp/slack) if you have any questions
- Find all the videos in this [YouTube Playlist](https://go.kestra.io/de-zoomcamp/yt-playlist)
### Troubleshooting tips
If you encounter similar errors to:
```
BigQueryError{reason=invalid, location=null,
message=Error while reading table: kestra-sandbox.zooomcamp.yellow_tripdata_2020_01,
error message: CSV table references column position 17, but line contains only 14 columns.;
line_number: 2103925 byte_offset_to_start_of_line: 194863028
column_index: 17 column_name: "congestion_surcharge" column_type: NUMERIC
File: gs://anna-geller/yellow_tripdata_2020-01.csv}
```
It means that the CSV file you're trying to load into BigQuery has a mismatch in the number of columns between the external source table (i.e. file in GCS) and the destination table in BigQuery. This can happen when for due to network/transfer issues, the file is not fully downloaded from GitHub or not correctly uploaded to GCS. The error suggests schema issues but that's not the case. Simply rerun the entire execution including redownloading the CSV file and reuploading it to GCS. This should resolve the issue.
---
# Community notes
Did you take notes? You can share them by creating a PR to this file!
* [Notes from Manuel Guerra)](https://github.com/ManuelGuerra1987/data-engineering-zoomcamp-notes/blob/main/2_Workflow-Orchestration-(Kestra)/README.md)
* [Notes from Horeb Seidou](https://www.notion.so/Week-2-Workflow-Orchestration-17129780dc4a80148debf61e6453fffe?pvs=4)
* Add your notes above this line
---
# Previous Cohorts
* 2022: [notes](../../2022/week_2_data_ingestion#community-notes) and [videos](../../2022/week_2_data_ingestion/)
* 2023: [notes](../../2023/week_2_workflow_orchestration#community-notes) and [videos](../../2023/week_2_workflow_orchestration/)
* 2024: [notes](../../2024/02-workflow-orchestration#community-notes) and [videos](../../2024/02-workflow-orchestration/)

View File

@ -0,0 +1,62 @@
volumes:
postgres-data:
driver: local
kestra-data:
driver: local
services:
postgres:
image: postgres
volumes:
- postgres-data:/var/lib/postgresql/data
environment:
POSTGRES_DB: kestra
POSTGRES_USER: kestra
POSTGRES_PASSWORD: k3str4
healthcheck:
test: ["CMD-SHELL", "pg_isready -d $${POSTGRES_DB} -U $${POSTGRES_USER}"]
interval: 30s
timeout: 10s
retries: 10
kestra:
image: kestra/kestra:develop
pull_policy: always
user: "root"
command: server standalone
volumes:
- kestra-data:/app/storage
- /var/run/docker.sock:/var/run/docker.sock
- /tmp/kestra-wd:/tmp/kestra-wd
environment:
KESTRA_CONFIGURATION: |
datasources:
postgres:
url: jdbc:postgresql://postgres:5432/kestra
driverClassName: org.postgresql.Driver
username: kestra
password: k3str4
kestra:
server:
basicAuth:
enabled: false
username: "admin@kestra.io" # it must be a valid email address
password: kestra
repository:
type: postgres
storage:
type: local
local:
basePath: "/app/storage"
queue:
type: postgres
tasks:
tmpDir:
path: /tmp/kestra-wd/tmp
url: http://localhost:8080/
ports:
- "8080:8080"
- "8081:8081"
depends_on:
postgres:
condition: service_started

View File

@ -0,0 +1,55 @@
id: 01_getting_started_data_pipeline
namespace: zoomcamp
inputs:
- id: columns_to_keep
type: ARRAY
itemType: STRING
defaults:
- brand
- price
tasks:
- id: extract
type: io.kestra.plugin.core.http.Download
uri: https://dummyjson.com/products
- id: transform
type: io.kestra.plugin.scripts.python.Script
containerImage: python:3.11-alpine
inputFiles:
data.json: "{{outputs.extract.uri}}"
outputFiles:
- "*.json"
env:
COLUMNS_TO_KEEP: "{{inputs.columns_to_keep}}"
script: |
import json
import os
columns_to_keep_str = os.getenv("COLUMNS_TO_KEEP")
columns_to_keep = json.loads(columns_to_keep_str)
with open("data.json", "r") as file:
data = json.load(file)
filtered_data = [
{column: product.get(column, "N/A") for column in columns_to_keep}
for product in data["products"]
]
with open("products.json", "w") as file:
json.dump(filtered_data, file, indent=4)
- id: query
type: io.kestra.plugin.jdbc.duckdb.Query
inputFiles:
products.json: "{{outputs.transform.outputFiles['products.json']}}"
sql: |
INSTALL json;
LOAD json;
SELECT brand, round(avg(price), 2) as avg_price
FROM read_json_auto('{{workingDir}}/products.json')
GROUP BY brand
ORDER BY avg_price DESC;
fetchType: STORE

View File

@ -0,0 +1,270 @@
id: 02_postgres_taxi
namespace: zoomcamp
description: |
The CSV Data used in the course: https://github.com/DataTalksClub/nyc-tlc-data/releases
inputs:
- id: taxi
type: SELECT
displayName: Select taxi type
values: [yellow, green]
defaults: yellow
- id: year
type: SELECT
displayName: Select year
values: ["2019", "2020"]
defaults: "2019"
- id: month
type: SELECT
displayName: Select month
values: ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"]
defaults: "01"
variables:
file: "{{inputs.taxi}}_tripdata_{{inputs.year}}-{{inputs.month}}.csv"
staging_table: "public.{{inputs.taxi}}_tripdata_staging"
table: "public.{{inputs.taxi}}_tripdata"
data: "{{outputs.extract.outputFiles[inputs.taxi ~ '_tripdata_' ~ inputs.year ~ '-' ~ inputs.month ~ '.csv']}}"
tasks:
- id: set_label
type: io.kestra.plugin.core.execution.Labels
labels:
file: "{{render(vars.file)}}"
taxi: "{{inputs.taxi}}"
- id: extract
type: io.kestra.plugin.scripts.shell.Commands
outputFiles:
- "*.csv"
taskRunner:
type: io.kestra.plugin.core.runner.Process
commands:
- wget -qO- https://github.com/DataTalksClub/nyc-tlc-data/releases/download/{{inputs.taxi}}/{{render(vars.file)}}.gz | gunzip > {{render(vars.file)}}
- id: if_yellow_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'yellow'}}"
then:
- id: yellow_create_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.table)}} (
unique_row_id text,
filename text,
VendorID text,
tpep_pickup_datetime timestamp,
tpep_dropoff_datetime timestamp,
passenger_count integer,
trip_distance double precision,
RatecodeID text,
store_and_fwd_flag text,
PULocationID text,
DOLocationID text,
payment_type integer,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
improvement_surcharge double precision,
total_amount double precision,
congestion_surcharge double precision
);
- id: yellow_create_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.staging_table)}} (
unique_row_id text,
filename text,
VendorID text,
tpep_pickup_datetime timestamp,
tpep_dropoff_datetime timestamp,
passenger_count integer,
trip_distance double precision,
RatecodeID text,
store_and_fwd_flag text,
PULocationID text,
DOLocationID text,
payment_type integer,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
improvement_surcharge double precision,
total_amount double precision,
congestion_surcharge double precision
);
- id: yellow_truncate_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
TRUNCATE TABLE {{render(vars.staging_table)}};
- id: yellow_copy_in_to_staging_table
type: io.kestra.plugin.jdbc.postgresql.CopyIn
format: CSV
from: "{{render(vars.data)}}"
table: "{{render(vars.staging_table)}}"
header: true
columns: [VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodeID,store_and_fwd_flag,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_surcharge,total_amount,congestion_surcharge]
- id: yellow_add_unique_id_and_filename
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
UPDATE {{render(vars.staging_table)}}
SET
unique_row_id = md5(
COALESCE(CAST(VendorID AS text), '') ||
COALESCE(CAST(tpep_pickup_datetime AS text), '') ||
COALESCE(CAST(tpep_dropoff_datetime AS text), '') ||
COALESCE(PULocationID, '') ||
COALESCE(DOLocationID, '') ||
COALESCE(CAST(fare_amount AS text), '') ||
COALESCE(CAST(trip_distance AS text), '')
),
filename = '{{render(vars.file)}}';
- id: yellow_merge_data
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
MERGE INTO {{render(vars.table)}} AS T
USING {{render(vars.staging_table)}} AS S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (
unique_row_id, filename, VendorID, tpep_pickup_datetime, tpep_dropoff_datetime,
passenger_count, trip_distance, RatecodeID, store_and_fwd_flag, PULocationID,
DOLocationID, payment_type, fare_amount, extra, mta_tax, tip_amount, tolls_amount,
improvement_surcharge, total_amount, congestion_surcharge
)
VALUES (
S.unique_row_id, S.filename, S.VendorID, S.tpep_pickup_datetime, S.tpep_dropoff_datetime,
S.passenger_count, S.trip_distance, S.RatecodeID, S.store_and_fwd_flag, S.PULocationID,
S.DOLocationID, S.payment_type, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount,
S.improvement_surcharge, S.total_amount, S.congestion_surcharge
);
- id: if_green_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'green'}}"
then:
- id: green_create_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.table)}} (
unique_row_id text,
filename text,
VendorID text,
lpep_pickup_datetime timestamp,
lpep_dropoff_datetime timestamp,
store_and_fwd_flag text,
RatecodeID text,
PULocationID text,
DOLocationID text,
passenger_count integer,
trip_distance double precision,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
ehail_fee double precision,
improvement_surcharge double precision,
total_amount double precision,
payment_type integer,
trip_type integer,
congestion_surcharge double precision
);
- id: green_create_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.staging_table)}} (
unique_row_id text,
filename text,
VendorID text,
lpep_pickup_datetime timestamp,
lpep_dropoff_datetime timestamp,
store_and_fwd_flag text,
RatecodeID text,
PULocationID text,
DOLocationID text,
passenger_count integer,
trip_distance double precision,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
ehail_fee double precision,
improvement_surcharge double precision,
total_amount double precision,
payment_type integer,
trip_type integer,
congestion_surcharge double precision
);
- id: green_truncate_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
TRUNCATE TABLE {{render(vars.staging_table)}};
- id: green_copy_in_to_staging_table
type: io.kestra.plugin.jdbc.postgresql.CopyIn
format: CSV
from: "{{render(vars.data)}}"
table: "{{render(vars.staging_table)}}"
header: true
columns: [VendorID,lpep_pickup_datetime,lpep_dropoff_datetime,store_and_fwd_flag,RatecodeID,PULocationID,DOLocationID,passenger_count,trip_distance,fare_amount,extra,mta_tax,tip_amount,tolls_amount,ehail_fee,improvement_surcharge,total_amount,payment_type,trip_type,congestion_surcharge]
- id: green_add_unique_id_and_filename
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
UPDATE {{render(vars.staging_table)}}
SET
unique_row_id = md5(
COALESCE(CAST(VendorID AS text), '') ||
COALESCE(CAST(lpep_pickup_datetime AS text), '') ||
COALESCE(CAST(lpep_dropoff_datetime AS text), '') ||
COALESCE(PULocationID, '') ||
COALESCE(DOLocationID, '') ||
COALESCE(CAST(fare_amount AS text), '') ||
COALESCE(CAST(trip_distance AS text), '')
),
filename = '{{render(vars.file)}}';
- id: green_merge_data
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
MERGE INTO {{render(vars.table)}} AS T
USING {{render(vars.staging_table)}} AS S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (
unique_row_id, filename, VendorID, lpep_pickup_datetime, lpep_dropoff_datetime,
store_and_fwd_flag, RatecodeID, PULocationID, DOLocationID, passenger_count,
trip_distance, fare_amount, extra, mta_tax, tip_amount, tolls_amount, ehail_fee,
improvement_surcharge, total_amount, payment_type, trip_type, congestion_surcharge
)
VALUES (
S.unique_row_id, S.filename, S.VendorID, S.lpep_pickup_datetime, S.lpep_dropoff_datetime,
S.store_and_fwd_flag, S.RatecodeID, S.PULocationID, S.DOLocationID, S.passenger_count,
S.trip_distance, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount, S.ehail_fee,
S.improvement_surcharge, S.total_amount, S.payment_type, S.trip_type, S.congestion_surcharge
);
- id: purge_files
type: io.kestra.plugin.core.storage.PurgeCurrentExecutionFiles
description: This will remove output files. If you'd like to explore Kestra outputs, disable it.
pluginDefaults:
- type: io.kestra.plugin.jdbc.postgresql
values:
url: jdbc:postgresql://host.docker.internal:5432/postgres-zoomcamp
username: kestra
password: k3str4

View File

@ -0,0 +1,275 @@
id: 02_postgres_taxi_scheduled
namespace: zoomcamp
description: |
Best to add a label `backfill:true` from the UI to track executions created via a backfill.
CSV data used here comes from: https://github.com/DataTalksClub/nyc-tlc-data/releases
concurrency:
limit: 1
inputs:
- id: taxi
type: SELECT
displayName: Select taxi type
values: [yellow, green]
defaults: yellow
variables:
file: "{{inputs.taxi}}_tripdata_{{trigger.date | date('yyyy-MM')}}.csv"
staging_table: "public.{{inputs.taxi}}_tripdata_staging"
table: "public.{{inputs.taxi}}_tripdata"
data: "{{outputs.extract.outputFiles[inputs.taxi ~ '_tripdata_' ~ (trigger.date | date('yyyy-MM')) ~ '.csv']}}"
tasks:
- id: set_label
type: io.kestra.plugin.core.execution.Labels
labels:
file: "{{render(vars.file)}}"
taxi: "{{inputs.taxi}}"
- id: extract
type: io.kestra.plugin.scripts.shell.Commands
outputFiles:
- "*.csv"
taskRunner:
type: io.kestra.plugin.core.runner.Process
commands:
- wget -qO- https://github.com/DataTalksClub/nyc-tlc-data/releases/download/{{inputs.taxi}}/{{render(vars.file)}}.gz | gunzip > {{render(vars.file)}}
- id: if_yellow_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'yellow'}}"
then:
- id: yellow_create_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.table)}} (
unique_row_id text,
filename text,
VendorID text,
tpep_pickup_datetime timestamp,
tpep_dropoff_datetime timestamp,
passenger_count integer,
trip_distance double precision,
RatecodeID text,
store_and_fwd_flag text,
PULocationID text,
DOLocationID text,
payment_type integer,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
improvement_surcharge double precision,
total_amount double precision,
congestion_surcharge double precision
);
- id: yellow_create_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.staging_table)}} (
unique_row_id text,
filename text,
VendorID text,
tpep_pickup_datetime timestamp,
tpep_dropoff_datetime timestamp,
passenger_count integer,
trip_distance double precision,
RatecodeID text,
store_and_fwd_flag text,
PULocationID text,
DOLocationID text,
payment_type integer,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
improvement_surcharge double precision,
total_amount double precision,
congestion_surcharge double precision
);
- id: yellow_truncate_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
TRUNCATE TABLE {{render(vars.staging_table)}};
- id: yellow_copy_in_to_staging_table
type: io.kestra.plugin.jdbc.postgresql.CopyIn
format: CSV
from: "{{render(vars.data)}}"
table: "{{render(vars.staging_table)}}"
header: true
columns: [VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodeID,store_and_fwd_flag,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_surcharge,total_amount,congestion_surcharge]
- id: yellow_add_unique_id_and_filename
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
UPDATE {{render(vars.staging_table)}}
SET
unique_row_id = md5(
COALESCE(CAST(VendorID AS text), '') ||
COALESCE(CAST(tpep_pickup_datetime AS text), '') ||
COALESCE(CAST(tpep_dropoff_datetime AS text), '') ||
COALESCE(PULocationID, '') ||
COALESCE(DOLocationID, '') ||
COALESCE(CAST(fare_amount AS text), '') ||
COALESCE(CAST(trip_distance AS text), '')
),
filename = '{{render(vars.file)}}';
- id: yellow_merge_data
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
MERGE INTO {{render(vars.table)}} AS T
USING {{render(vars.staging_table)}} AS S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (
unique_row_id, filename, VendorID, tpep_pickup_datetime, tpep_dropoff_datetime,
passenger_count, trip_distance, RatecodeID, store_and_fwd_flag, PULocationID,
DOLocationID, payment_type, fare_amount, extra, mta_tax, tip_amount, tolls_amount,
improvement_surcharge, total_amount, congestion_surcharge
)
VALUES (
S.unique_row_id, S.filename, S.VendorID, S.tpep_pickup_datetime, S.tpep_dropoff_datetime,
S.passenger_count, S.trip_distance, S.RatecodeID, S.store_and_fwd_flag, S.PULocationID,
S.DOLocationID, S.payment_type, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount,
S.improvement_surcharge, S.total_amount, S.congestion_surcharge
);
- id: if_green_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'green'}}"
then:
- id: green_create_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.table)}} (
unique_row_id text,
filename text,
VendorID text,
lpep_pickup_datetime timestamp,
lpep_dropoff_datetime timestamp,
store_and_fwd_flag text,
RatecodeID text,
PULocationID text,
DOLocationID text,
passenger_count integer,
trip_distance double precision,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
ehail_fee double precision,
improvement_surcharge double precision,
total_amount double precision,
payment_type integer,
trip_type integer,
congestion_surcharge double precision
);
- id: green_create_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
CREATE TABLE IF NOT EXISTS {{render(vars.staging_table)}} (
unique_row_id text,
filename text,
VendorID text,
lpep_pickup_datetime timestamp,
lpep_dropoff_datetime timestamp,
store_and_fwd_flag text,
RatecodeID text,
PULocationID text,
DOLocationID text,
passenger_count integer,
trip_distance double precision,
fare_amount double precision,
extra double precision,
mta_tax double precision,
tip_amount double precision,
tolls_amount double precision,
ehail_fee double precision,
improvement_surcharge double precision,
total_amount double precision,
payment_type integer,
trip_type integer,
congestion_surcharge double precision
);
- id: green_truncate_staging_table
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
TRUNCATE TABLE {{render(vars.staging_table)}};
- id: green_copy_in_to_staging_table
type: io.kestra.plugin.jdbc.postgresql.CopyIn
format: CSV
from: "{{render(vars.data)}}"
table: "{{render(vars.staging_table)}}"
header: true
columns: [VendorID,lpep_pickup_datetime,lpep_dropoff_datetime,store_and_fwd_flag,RatecodeID,PULocationID,DOLocationID,passenger_count,trip_distance,fare_amount,extra,mta_tax,tip_amount,tolls_amount,ehail_fee,improvement_surcharge,total_amount,payment_type,trip_type,congestion_surcharge]
- id: green_add_unique_id_and_filename
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
UPDATE {{render(vars.staging_table)}}
SET
unique_row_id = md5(
COALESCE(CAST(VendorID AS text), '') ||
COALESCE(CAST(lpep_pickup_datetime AS text), '') ||
COALESCE(CAST(lpep_dropoff_datetime AS text), '') ||
COALESCE(PULocationID, '') ||
COALESCE(DOLocationID, '') ||
COALESCE(CAST(fare_amount AS text), '') ||
COALESCE(CAST(trip_distance AS text), '')
),
filename = '{{render(vars.file)}}';
- id: green_merge_data
type: io.kestra.plugin.jdbc.postgresql.Queries
sql: |
MERGE INTO {{render(vars.table)}} AS T
USING {{render(vars.staging_table)}} AS S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (
unique_row_id, filename, VendorID, lpep_pickup_datetime, lpep_dropoff_datetime,
store_and_fwd_flag, RatecodeID, PULocationID, DOLocationID, passenger_count,
trip_distance, fare_amount, extra, mta_tax, tip_amount, tolls_amount, ehail_fee,
improvement_surcharge, total_amount, payment_type, trip_type, congestion_surcharge
)
VALUES (
S.unique_row_id, S.filename, S.VendorID, S.lpep_pickup_datetime, S.lpep_dropoff_datetime,
S.store_and_fwd_flag, S.RatecodeID, S.PULocationID, S.DOLocationID, S.passenger_count,
S.trip_distance, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount, S.ehail_fee,
S.improvement_surcharge, S.total_amount, S.payment_type, S.trip_type, S.congestion_surcharge
);
- id: purge_files
type: io.kestra.plugin.core.storage.PurgeCurrentExecutionFiles
description: To avoid cluttering your storage, we will remove the downloaded files
pluginDefaults:
- type: io.kestra.plugin.jdbc.postgresql
values:
url: jdbc:postgresql://host.docker.internal:5432/postgres-zoomcamp
username: kestra
password: k3str4
triggers:
- id: green_schedule
type: io.kestra.plugin.core.trigger.Schedule
cron: "0 9 1 * *"
inputs:
taxi: green
- id: yellow_schedule
type: io.kestra.plugin.core.trigger.Schedule
cron: "0 10 1 * *"
inputs:
taxi: yellow

View File

@ -0,0 +1,59 @@
id: 03_postgres_dbt
namespace: zoomcamp
inputs:
- id: dbt_command
type: SELECT
allowCustomValue: true
defaults: dbt build
values:
- dbt build
- dbt debug # use when running the first time to validate DB connection
tasks:
- id: sync
type: io.kestra.plugin.git.SyncNamespaceFiles
url: https://github.com/DataTalksClub/data-engineering-zoomcamp
branch: main
namespace: "{{ flow.namespace }}"
gitDirectory: 04-analytics-engineering/taxi_rides_ny
dryRun: false
# disabled: true # this Git Sync is needed only when running it the first time, afterwards the task can be disabled
- id: dbt-build
type: io.kestra.plugin.dbt.cli.DbtCLI
env:
DBT_DATABASE: postgres-zoomcamp
DBT_SCHEMA: public
namespaceFiles:
enabled: true
containerImage: ghcr.io/kestra-io/dbt-postgres:latest
taskRunner:
type: io.kestra.plugin.scripts.runner.docker.Docker
commands:
- dbt deps
- "{{ inputs.dbt_command }}"
storeManifest:
key: manifest.json
namespace: "{{ flow.namespace }}"
profiles: |
default:
outputs:
dev:
type: postgres
host: host.docker.internal
user: kestra
password: k3str4
port: 5432
dbname: postgres-zoomcamp
schema: public
threads: 8
connect_timeout: 10
priority: interactive
target: dev
description: |
Note that you need to adjust the models/staging/schema.yml file to match your database and schema. Select and edit that Namespace File from the UI. Save and run this flow. Once https://github.com/DataTalksClub/data-engineering-zoomcamp/pull/565/files is merged, you can ignore this note as it will be dynamically adjusted based on env variables.
```yaml
sources:
- name: staging
database: postgres-zoomcamp
schema: public
```

View File

@ -0,0 +1,37 @@
id: 04_gcp_kv
namespace: zoomcamp
tasks:
- id: gcp_creds
type: io.kestra.plugin.core.kv.Set
key: GCP_CREDS
kvType: JSON
value: |
{
"type": "service_account",
"project_id": "...",
}
- id: gcp_project_id
type: io.kestra.plugin.core.kv.Set
key: GCP_PROJECT_ID
kvType: STRING
value: kestra-sandbox # TODO replace with your project id
- id: gcp_location
type: io.kestra.plugin.core.kv.Set
key: GCP_LOCATION
kvType: STRING
value: europe-west2
- id: gcp_bucket_name
type: io.kestra.plugin.core.kv.Set
key: GCP_BUCKET_NAME
kvType: STRING
value: your-name-kestra # TODO make sure it's globally unique!
- id: gcp_dataset
type: io.kestra.plugin.core.kv.Set
key: GCP_DATASET
kvType: STRING
value: zoomcamp

View File

@ -0,0 +1,22 @@
id: 05_gcp_setup
namespace: zoomcamp
tasks:
- id: create_gcs_bucket
type: io.kestra.plugin.gcp.gcs.CreateBucket
ifExists: SKIP
storageClass: REGIONAL
name: "{{kv('GCP_BUCKET_NAME')}}" # make sure it's globally unique!
- id: create_bq_dataset
type: io.kestra.plugin.gcp.bigquery.CreateDataset
name: "{{kv('GCP_DATASET')}}"
ifExists: SKIP
pluginDefaults:
- type: io.kestra.plugin.gcp
values:
serviceAccount: "{{kv('GCP_CREDS')}}"
projectId: "{{kv('GCP_PROJECT_ID')}}"
location: "{{kv('GCP_LOCATION')}}"
bucket: "{{kv('GCP_BUCKET_NAME')}}"

View File

@ -0,0 +1,248 @@
id: 06_gcp_taxi
namespace: zoomcamp
description: |
The CSV Data used in the course: https://github.com/DataTalksClub/nyc-tlc-data/releases
inputs:
- id: taxi
type: SELECT
displayName: Select taxi type
values: [yellow, green]
defaults: green
- id: year
type: SELECT
displayName: Select year
values: ["2019", "2020"]
defaults: "2019"
allowCustomValue: true # allows you to type 2021 from the UI for the homework 🤗
- id: month
type: SELECT
displayName: Select month
values: ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"]
defaults: "01"
variables:
file: "{{inputs.taxi}}_tripdata_{{inputs.year}}-{{inputs.month}}.csv"
gcs_file: "gs://{{kv('GCP_BUCKET_NAME')}}/{{vars.file}}"
table: "{{kv('GCP_DATASET')}}.{{inputs.taxi}}_tripdata_{{inputs.year}}_{{inputs.month}}"
data: "{{outputs.extract.outputFiles[inputs.taxi ~ '_tripdata_' ~ inputs.year ~ '-' ~ inputs.month ~ '.csv']}}"
tasks:
- id: set_label
type: io.kestra.plugin.core.execution.Labels
labels:
file: "{{render(vars.file)}}"
taxi: "{{inputs.taxi}}"
- id: extract
type: io.kestra.plugin.scripts.shell.Commands
outputFiles:
- "*.csv"
taskRunner:
type: io.kestra.plugin.core.runner.Process
commands:
- wget -qO- https://github.com/DataTalksClub/nyc-tlc-data/releases/download/{{inputs.taxi}}/{{render(vars.file)}}.gz | gunzip > {{render(vars.file)}}
- id: upload_to_gcs
type: io.kestra.plugin.gcp.gcs.Upload
from: "{{render(vars.data)}}"
to: "{{render(vars.gcs_file)}}"
- id: if_yellow_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'yellow'}}"
then:
- id: bq_yellow_tripdata
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE TABLE IF NOT EXISTS `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.yellow_tripdata`
(
unique_row_id BYTES OPTIONS (description = 'A unique identifier for the trip, generated by hashing key trip attributes.'),
filename STRING OPTIONS (description = 'The source filename from which the trip data was loaded.'),
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
tpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
tpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
passenger_count INTEGER OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. TRUE = store and forward trip, FALSE = not a store and forward trip'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
PARTITION BY DATE(tpep_pickup_datetime);
- id: bq_yellow_table_ext
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE EXTERNAL TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`
(
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
tpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
tpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
passenger_count INTEGER OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. TRUE = store and forward trip, FALSE = not a store and forward trip'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
OPTIONS (
format = 'CSV',
uris = ['{{render(vars.gcs_file)}}'],
skip_leading_rows = 1,
ignore_unknown_values = TRUE
);
- id: bq_yellow_table_tmp
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}`
AS
SELECT
MD5(CONCAT(
COALESCE(CAST(VendorID AS STRING), ""),
COALESCE(CAST(tpep_pickup_datetime AS STRING), ""),
COALESCE(CAST(tpep_dropoff_datetime AS STRING), ""),
COALESCE(CAST(PULocationID AS STRING), ""),
COALESCE(CAST(DOLocationID AS STRING), "")
)) AS unique_row_id,
"{{render(vars.file)}}" AS filename,
*
FROM `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`;
- id: bq_yellow_merge
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
MERGE INTO `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.yellow_tripdata` T
USING `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}` S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (unique_row_id, filename, VendorID, tpep_pickup_datetime, tpep_dropoff_datetime, passenger_count, trip_distance, RatecodeID, store_and_fwd_flag, PULocationID, DOLocationID, payment_type, fare_amount, extra, mta_tax, tip_amount, tolls_amount, improvement_surcharge, total_amount, congestion_surcharge)
VALUES (S.unique_row_id, S.filename, S.VendorID, S.tpep_pickup_datetime, S.tpep_dropoff_datetime, S.passenger_count, S.trip_distance, S.RatecodeID, S.store_and_fwd_flag, S.PULocationID, S.DOLocationID, S.payment_type, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount, S.improvement_surcharge, S.total_amount, S.congestion_surcharge);
- id: if_green_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'green'}}"
then:
- id: bq_green_tripdata
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE TABLE IF NOT EXISTS `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.green_tripdata`
(
unique_row_id BYTES OPTIONS (description = 'A unique identifier for the trip, generated by hashing key trip attributes.'),
filename STRING OPTIONS (description = 'The source filename from which the trip data was loaded.'),
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
lpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
lpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. Y= store and forward trip N= not a store and forward trip'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
passenger_count INT64 OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
ehail_fee NUMERIC,
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
trip_type STRING OPTIONS (description = 'A code indicating whether the trip was a street-hail or a dispatch that is automatically assigned based on the metered rate in use but can be altered by the driver. 1= Street-hail 2= Dispatch'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
PARTITION BY DATE(lpep_pickup_datetime);
- id: bq_green_table_ext
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE EXTERNAL TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`
(
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
lpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
lpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. Y= store and forward trip N= not a store and forward trip'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
passenger_count INT64 OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
ehail_fee NUMERIC,
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
trip_type STRING OPTIONS (description = 'A code indicating whether the trip was a street-hail or a dispatch that is automatically assigned based on the metered rate in use but can be altered by the driver. 1= Street-hail 2= Dispatch'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
OPTIONS (
format = 'CSV',
uris = ['{{render(vars.gcs_file)}}'],
skip_leading_rows = 1,
ignore_unknown_values = TRUE
);
- id: bq_green_table_tmp
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}`
AS
SELECT
MD5(CONCAT(
COALESCE(CAST(VendorID AS STRING), ""),
COALESCE(CAST(lpep_pickup_datetime AS STRING), ""),
COALESCE(CAST(lpep_dropoff_datetime AS STRING), ""),
COALESCE(CAST(PULocationID AS STRING), ""),
COALESCE(CAST(DOLocationID AS STRING), "")
)) AS unique_row_id,
"{{render(vars.file)}}" AS filename,
*
FROM `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`;
- id: bq_green_merge
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
MERGE INTO `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.green_tripdata` T
USING `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}` S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (unique_row_id, filename, VendorID, lpep_pickup_datetime, lpep_dropoff_datetime, store_and_fwd_flag, RatecodeID, PULocationID, DOLocationID, passenger_count, trip_distance, fare_amount, extra, mta_tax, tip_amount, tolls_amount, ehail_fee, improvement_surcharge, total_amount, payment_type, trip_type, congestion_surcharge)
VALUES (S.unique_row_id, S.filename, S.VendorID, S.lpep_pickup_datetime, S.lpep_dropoff_datetime, S.store_and_fwd_flag, S.RatecodeID, S.PULocationID, S.DOLocationID, S.passenger_count, S.trip_distance, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount, S.ehail_fee, S.improvement_surcharge, S.total_amount, S.payment_type, S.trip_type, S.congestion_surcharge);
- id: purge_files
type: io.kestra.plugin.core.storage.PurgeCurrentExecutionFiles
description: If you'd like to explore Kestra outputs, disable it.
disabled: false
pluginDefaults:
- type: io.kestra.plugin.gcp
values:
serviceAccount: "{{kv('GCP_CREDS')}}"
projectId: "{{kv('GCP_PROJECT_ID')}}"
location: "{{kv('GCP_LOCATION')}}"
bucket: "{{kv('GCP_BUCKET_NAME')}}"

View File

@ -0,0 +1,249 @@
id: 06_gcp_taxi_scheduled
namespace: zoomcamp
description: |
Best to add a label `backfill:true` from the UI to track executions created via a backfill.
CSV data used here comes from: https://github.com/DataTalksClub/nyc-tlc-data/releases
inputs:
- id: taxi
type: SELECT
displayName: Select taxi type
values: [yellow, green]
defaults: green
variables:
file: "{{inputs.taxi}}_tripdata_{{trigger.date | date('yyyy-MM')}}.csv"
gcs_file: "gs://{{kv('GCP_BUCKET_NAME')}}/{{vars.file}}"
table: "{{kv('GCP_DATASET')}}.{{inputs.taxi}}_tripdata_{{trigger.date | date('yyyy_MM')}}"
data: "{{outputs.extract.outputFiles[inputs.taxi ~ '_tripdata_' ~ (trigger.date | date('yyyy-MM')) ~ '.csv']}}"
tasks:
- id: set_label
type: io.kestra.plugin.core.execution.Labels
labels:
file: "{{render(vars.file)}}"
taxi: "{{inputs.taxi}}"
- id: extract
type: io.kestra.plugin.scripts.shell.Commands
outputFiles:
- "*.csv"
taskRunner:
type: io.kestra.plugin.core.runner.Process
commands:
- wget -qO- https://github.com/DataTalksClub/nyc-tlc-data/releases/download/{{inputs.taxi}}/{{render(vars.file)}}.gz | gunzip > {{render(vars.file)}}
- id: upload_to_gcs
type: io.kestra.plugin.gcp.gcs.Upload
from: "{{render(vars.data)}}"
to: "{{render(vars.gcs_file)}}"
- id: if_yellow_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'yellow'}}"
then:
- id: bq_yellow_tripdata
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE TABLE IF NOT EXISTS `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.yellow_tripdata`
(
unique_row_id BYTES OPTIONS (description = 'A unique identifier for the trip, generated by hashing key trip attributes.'),
filename STRING OPTIONS (description = 'The source filename from which the trip data was loaded.'),
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
tpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
tpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
passenger_count INTEGER OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. TRUE = store and forward trip, FALSE = not a store and forward trip'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
PARTITION BY DATE(tpep_pickup_datetime);
- id: bq_yellow_table_ext
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE EXTERNAL TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`
(
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
tpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
tpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
passenger_count INTEGER OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. TRUE = store and forward trip, FALSE = not a store and forward trip'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
OPTIONS (
format = 'CSV',
uris = ['{{render(vars.gcs_file)}}'],
skip_leading_rows = 1,
ignore_unknown_values = TRUE
);
- id: bq_yellow_table_tmp
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}`
AS
SELECT
MD5(CONCAT(
COALESCE(CAST(VendorID AS STRING), ""),
COALESCE(CAST(tpep_pickup_datetime AS STRING), ""),
COALESCE(CAST(tpep_dropoff_datetime AS STRING), ""),
COALESCE(CAST(PULocationID AS STRING), ""),
COALESCE(CAST(DOLocationID AS STRING), "")
)) AS unique_row_id,
"{{render(vars.file)}}" AS filename,
*
FROM `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`;
- id: bq_yellow_merge
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
MERGE INTO `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.yellow_tripdata` T
USING `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}` S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (unique_row_id, filename, VendorID, tpep_pickup_datetime, tpep_dropoff_datetime, passenger_count, trip_distance, RatecodeID, store_and_fwd_flag, PULocationID, DOLocationID, payment_type, fare_amount, extra, mta_tax, tip_amount, tolls_amount, improvement_surcharge, total_amount, congestion_surcharge)
VALUES (S.unique_row_id, S.filename, S.VendorID, S.tpep_pickup_datetime, S.tpep_dropoff_datetime, S.passenger_count, S.trip_distance, S.RatecodeID, S.store_and_fwd_flag, S.PULocationID, S.DOLocationID, S.payment_type, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount, S.improvement_surcharge, S.total_amount, S.congestion_surcharge);
- id: if_green_taxi
type: io.kestra.plugin.core.flow.If
condition: "{{inputs.taxi == 'green'}}"
then:
- id: bq_green_tripdata
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE TABLE IF NOT EXISTS `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.green_tripdata`
(
unique_row_id BYTES OPTIONS (description = 'A unique identifier for the trip, generated by hashing key trip attributes.'),
filename STRING OPTIONS (description = 'The source filename from which the trip data was loaded.'),
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
lpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
lpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. Y= store and forward trip N= not a store and forward trip'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
passenger_count INT64 OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
ehail_fee NUMERIC,
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
trip_type STRING OPTIONS (description = 'A code indicating whether the trip was a street-hail or a dispatch that is automatically assigned based on the metered rate in use but can be altered by the driver. 1= Street-hail 2= Dispatch'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
PARTITION BY DATE(lpep_pickup_datetime);
- id: bq_green_table_ext
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE EXTERNAL TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`
(
VendorID STRING OPTIONS (description = 'A code indicating the LPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.'),
lpep_pickup_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was engaged'),
lpep_dropoff_datetime TIMESTAMP OPTIONS (description = 'The date and time when the meter was disengaged'),
store_and_fwd_flag STRING OPTIONS (description = 'This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. Y= store and forward trip N= not a store and forward trip'),
RatecodeID STRING OPTIONS (description = 'The final rate code in effect at the end of the trip. 1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride'),
PULocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was engaged'),
DOLocationID STRING OPTIONS (description = 'TLC Taxi Zone in which the taximeter was disengaged'),
passenger_count INT64 OPTIONS (description = 'The number of passengers in the vehicle. This is a driver-entered value.'),
trip_distance NUMERIC OPTIONS (description = 'The elapsed trip distance in miles reported by the taximeter.'),
fare_amount NUMERIC OPTIONS (description = 'The time-and-distance fare calculated by the meter'),
extra NUMERIC OPTIONS (description = 'Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges'),
mta_tax NUMERIC OPTIONS (description = '$0.50 MTA tax that is automatically triggered based on the metered rate in use'),
tip_amount NUMERIC OPTIONS (description = 'Tip amount. This field is automatically populated for credit card tips. Cash tips are not included.'),
tolls_amount NUMERIC OPTIONS (description = 'Total amount of all tolls paid in trip.'),
ehail_fee NUMERIC,
improvement_surcharge NUMERIC OPTIONS (description = '$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.'),
total_amount NUMERIC OPTIONS (description = 'The total amount charged to passengers. Does not include cash tips.'),
payment_type INTEGER OPTIONS (description = 'A numeric code signifying how the passenger paid for the trip. 1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip'),
trip_type STRING OPTIONS (description = 'A code indicating whether the trip was a street-hail or a dispatch that is automatically assigned based on the metered rate in use but can be altered by the driver. 1= Street-hail 2= Dispatch'),
congestion_surcharge NUMERIC OPTIONS (description = 'Congestion surcharge applied to trips in congested zones')
)
OPTIONS (
format = 'CSV',
uris = ['{{render(vars.gcs_file)}}'],
skip_leading_rows = 1,
ignore_unknown_values = TRUE
);
- id: bq_green_table_tmp
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
CREATE OR REPLACE TABLE `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}`
AS
SELECT
MD5(CONCAT(
COALESCE(CAST(VendorID AS STRING), ""),
COALESCE(CAST(lpep_pickup_datetime AS STRING), ""),
COALESCE(CAST(lpep_dropoff_datetime AS STRING), ""),
COALESCE(CAST(PULocationID AS STRING), ""),
COALESCE(CAST(DOLocationID AS STRING), "")
)) AS unique_row_id,
"{{render(vars.file)}}" AS filename,
*
FROM `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}_ext`;
- id: bq_green_merge
type: io.kestra.plugin.gcp.bigquery.Query
sql: |
MERGE INTO `{{kv('GCP_PROJECT_ID')}}.{{kv('GCP_DATASET')}}.green_tripdata` T
USING `{{kv('GCP_PROJECT_ID')}}.{{render(vars.table)}}` S
ON T.unique_row_id = S.unique_row_id
WHEN NOT MATCHED THEN
INSERT (unique_row_id, filename, VendorID, lpep_pickup_datetime, lpep_dropoff_datetime, store_and_fwd_flag, RatecodeID, PULocationID, DOLocationID, passenger_count, trip_distance, fare_amount, extra, mta_tax, tip_amount, tolls_amount, ehail_fee, improvement_surcharge, total_amount, payment_type, trip_type, congestion_surcharge)
VALUES (S.unique_row_id, S.filename, S.VendorID, S.lpep_pickup_datetime, S.lpep_dropoff_datetime, S.store_and_fwd_flag, S.RatecodeID, S.PULocationID, S.DOLocationID, S.passenger_count, S.trip_distance, S.fare_amount, S.extra, S.mta_tax, S.tip_amount, S.tolls_amount, S.ehail_fee, S.improvement_surcharge, S.total_amount, S.payment_type, S.trip_type, S.congestion_surcharge);
- id: purge_files
type: io.kestra.plugin.core.storage.PurgeCurrentExecutionFiles
description: To avoid cluttering your storage, we will remove the downloaded files
pluginDefaults:
- type: io.kestra.plugin.gcp
values:
serviceAccount: "{{kv('GCP_CREDS')}}"
projectId: "{{kv('GCP_PROJECT_ID')}}"
location: "{{kv('GCP_LOCATION')}}"
bucket: "{{kv('GCP_BUCKET_NAME')}}"
triggers:
- id: green_schedule
type: io.kestra.plugin.core.trigger.Schedule
cron: "0 9 1 * *"
inputs:
taxi: green
- id: yellow_schedule
type: io.kestra.plugin.core.trigger.Schedule
cron: "0 10 1 * *"
inputs:
taxi: yellow

View File

@ -0,0 +1,62 @@
id: 07_gcp_dbt
namespace: zoomcamp
inputs:
- id: dbt_command
type: SELECT
allowCustomValue: true
defaults: dbt build
values:
- dbt build
- dbt debug # use when running the first time to validate DB connection
tasks:
- id: sync
type: io.kestra.plugin.git.SyncNamespaceFiles
url: https://github.com/DataTalksClub/data-engineering-zoomcamp
branch: main
namespace: "{{flow.namespace}}"
gitDirectory: 04-analytics-engineering/taxi_rides_ny
dryRun: false
# disabled: true # this Git Sync is needed only when running it the first time, afterwards the task can be disabled
- id: dbt-build
type: io.kestra.plugin.dbt.cli.DbtCLI
env:
DBT_DATABASE: "{{kv('GCP_PROJECT_ID')}}"
DBT_SCHEMA: "{{kv('GCP_DATASET')}}"
namespaceFiles:
enabled: true
containerImage: ghcr.io/kestra-io/dbt-bigquery:latest
taskRunner:
type: io.kestra.plugin.scripts.runner.docker.Docker
inputFiles:
sa.json: "{{kv('GCP_CREDS')}}"
commands:
- dbt deps
- "{{ inputs.dbt_command }}"
storeManifest:
key: manifest.json
namespace: "{{ flow.namespace }}"
profiles: |
default:
outputs:
dev:
type: bigquery
dataset: "{{kv('GCP_DATASET')}}"
project: "{{kv('GCP_PROJECT_ID')}}"
location: "{{kv('GCP_LOCATION')}}"
keyfile: sa.json
method: service-account
priority: interactive
threads: 16
timeout_seconds: 300
fixed_retries: 1
target: dev
description: |
Note that you need to adjust the models/staging/schema.yml file to match your database and schema. Select and edit that Namespace File from the UI. Save and run this flow. Once https://github.com/DataTalksClub/data-engineering-zoomcamp/pull/565/files is merged, you can ignore this note as it will be dynamically adjusted based on env variables.
```yaml
sources:
- name: staging
database: kestra-sandbox
schema: zoomcamp
```

View File

@ -0,0 +1,57 @@
## Module 2 Homework
### Assignment
So far in the course, we processed data for the year 2019 and 2020. Your task is to extend the existing flows to include data for the year 2021.
![homework datasets](images/homework.png)
As a hint, Kestra makes that process really easy:
1. You can leverage the backfill functionality in the [scheduled flow](../flows/07_gcp_taxi_scheduled.yaml) to backfill the data for the year 2021. Just make sure to select the time period for which data exists i.e. from `2021-01-01` to `2021-07-31`. Also, make sure to do the same for both `yellow` and `green` taxi data (select the right service in the `taxi` input).
2. Alternatively, run the flow manually for each of the seven months of 2021 for both `yellow` and `green` taxi data. Challenge for you: find out how to loop over the combination of Year-Month and `taxi`-type using `ForEach` task which triggers the flow for each combination using a `Subflow` task.
### Quiz Questions
Complete the Quiz shown below. Its a set of 6 multiple-choice questions to test your understanding of workflow orchestration, Kestra and ETL pipelines for data lakes and warehouses.
1) Within the execution for `Yellow` Taxi data for the year `2020` and month `12`: what is the uncompressed file size (i.e. the output file `yellow_tripdata_2020-12.csv` of the `extract` task)?
- 128.3 MB
- 134.5 MB
- 364.7 MB
- 692.6 MB
2) What is the value of the variable `file` when the inputs `taxi` is set to `green`, `year` is set to `2020`, and `month` is set to `04` during execution?
- `{{inputs.taxi}}_tripdata_{{inputs.year}}-{{inputs.month}}.csv`
- `green_tripdata_2020-04.csv`
- `green_tripdata_04_2020.csv`
- `green_tripdata_2020.csv`
3) How many rows are there for the `Yellow` Taxi data for the year 2020?
- 13,537.299
- 24,648,499
- 18,324,219
- 29,430,127
4) How many rows are there for the `Green` Taxi data for the year 2020?
- 5,327,301
- 936,199
- 1,734,051
- 1,342,034
5) Using dbt on the `Green` and `Yellow` Taxi data for the year 2020, how many rows are there in the `fact_trips` table?
- 198
- 165
- 151
- 203
6) How would you configure the timezone to New York in a Schedule trigger?
- Add a `timezone` property set to `EST` in the `Schedule` trigger configuration
- Add a `timezone` property set to `America/New_York` in the `Schedule` trigger configuration
- Add a `timezone` property set to `UTC-5` in the `Schedule` trigger configuration
- Add a `location` property set to `New_York` in the `Schedule` trigger configuration
## Submitting the solutions
* Form for submitting: https://courses.datatalks.club/de-zoomcamp-2025/homework/hw2
* Check the link above to see the due date

Binary file not shown.

After

Width:  |  Height:  |  Size: 716 KiB

View File

@ -0,0 +1,15 @@
version: "3.8"
services:
postgres:
image: postgres
container_name: postgres-db
environment:
POSTGRES_USER: kestra
POSTGRES_PASSWORD: k3str4
POSTGRES_DB: postgres-zoomcamp
ports:
- "5432:5432"
volumes:
- postgres-data:/var/lib/postgresql/data
volumes:
postgres-data:

View File

@ -0,0 +1,80 @@
# Data Warehouse and BigQuery
- [Slides](https://docs.google.com/presentation/d/1a3ZoBAXFk8-EhUsd7rAZd-5p_HpltkzSeujjRGB2TAI/edit?usp=sharing)
- [Big Query basic SQL](big_query.sql)
# Videos
## Data Warehouse
- Data Warehouse and BigQuery
[![](https://markdown-videos-api.jorgenkh.no/youtube/jrHljAoD6nM)](https://youtu.be/jrHljAoD6nM&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=34)
## :movie_camera: Partitoning and clustering
- Partioning and Clustering
[![](https://markdown-videos-api.jorgenkh.no/youtube/-CqXf7vhhDs)](https://youtu.be/-CqXf7vhhDs&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=35)
- Partioning vs Clustering
[![](https://markdown-videos-api.jorgenkh.no/youtube/-CqXf7vhhDs)](https://youtu.be/-CqXf7vhhDs?si=p1sYQCAs8dAa7jIm&t=193&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=35)
## :movie_camera: Best practices
[![](https://markdown-videos-api.jorgenkh.no/youtube/k81mLJVX08w)](https://youtu.be/k81mLJVX08w&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=36)
## :movie_camera: Internals of BigQuery
[![](https://markdown-videos-api.jorgenkh.no/youtube/eduHi1inM4s)](https://youtu.be/eduHi1inM4s&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=37)
## Advanced topics
### :movie_camera: Machine Learning in Big Query
[![](https://markdown-videos-api.jorgenkh.no/youtube/B-WtpB0PuG4)](https://youtu.be/B-WtpB0PuG4&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=34)
* [SQL for ML in BigQuery](big_query_ml.sql)
**Important links**
- [BigQuery ML Tutorials](https://cloud.google.com/bigquery-ml/docs/tutorials)
- [BigQuery ML Reference Parameter](https://cloud.google.com/bigquery-ml/docs/analytics-reference-patterns)
- [Hyper Parameter tuning](https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-create-glm)
- [Feature preprocessing](https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-preprocess-overview)
### :movie_camera: Deploying Machine Learning model from BigQuery
[![](https://markdown-videos-api.jorgenkh.no/youtube/BjARzEWaznU)](https://youtu.be/BjARzEWaznU&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=39)
- [Steps to extract and deploy model with docker](extract_model.md)
# Homework
* [2024 Homework](../cohorts/2024/03-data-warehouse/homework.md)
# Community notes
Did you take notes? You can share them here.
* [Notes by Alvaro Navas](https://github.com/ziritrion/dataeng-zoomcamp/blob/main/notes/3_data_warehouse.md)
* [Isaac Kargar's blog post](https://kargarisaac.github.io/blog/data%20engineering/jupyter/2022/01/30/data-engineering-w3.html)
* [Marcos Torregrosa's blog post](https://www.n4gash.com/2023/data-engineering-zoomcamp-semana-3/)
* [Notes by Victor Padilha](https://github.com/padilha/de-zoomcamp/tree/master/week3)
* [Notes from Xia He-Bleinagel](https://xiahe-bleinagel.com/2023/02/week-3-data-engineering-zoomcamp-notes-data-warehouse-and-bigquery/)
* [Bigger picture summary on Data Lakes, Data Warehouses, and tooling](https://medium.com/@verazabeida/zoomcamp-week-4-b8bde661bf98), by Vera
* [Notes by froukje](https://github.com/froukje/de-zoomcamp/blob/main/week_3_data_warehouse/notes/notes_week_03.md)
* [Notes by Alain Boisvert](https://github.com/boisalai/de-zoomcamp-2023/blob/main/week3.md)
* [Notes from Vincenzo Galante](https://binchentso.notion.site/Data-Talks-Club-Data-Engineering-Zoomcamp-8699af8e7ff94ec49e6f9bdec8eb69fd)
* [2024 videos transcript week3](https://drive.google.com/drive/folders/1quIiwWO-tJCruqvtlqe_Olw8nvYSmmDJ?usp=sharing) by Maria Fisher
* [Notes by Linda](https://github.com/inner-outer-space/de-zoomcamp-2024/blob/main/3a-data-warehouse/readme.md)
* [Jonah Oliver's blog post](https://www.jonahboliver.com/blog/de-zc-w3)
* [2024 - steps to send data from Mage to GCS + creating external table](https://drive.google.com/file/d/1GIi6xnS4070a8MUlIg-ozITt485_-ePB/view?usp=drive_link) by Maria Fisher
* [2024 - mage dataloader script to load the parquet files from a remote URL and push it to Google bucket as parquet file](https://github.com/amohan601/dataengineering-zoomcamp2024/blob/main/week_3_data_warehouse/mage_scripts/green_taxi_2022_v2.py) by Anju Mohan
* [2024 - steps to send data from Mage to GCS + creating external table](https://drive.google.com/file/d/1GIi6xnS4070a8MUlIg-ozITt485_-ePB/view?usp=drive_link) by Maria Fisher
* [Notes by HongWei](https://github.com/hwchua0209/data-engineering-zoomcamp-submission/blob/main/03-data-warehouse/README.md)
* Add your notes here (above this line)

View File

@ -0,0 +1,140 @@
# Module 4: Analytics Engineering
Goal: Transforming the data loaded in DWH into Analytical Views developing a [dbt project](taxi_rides_ny/README.md).
### Prerequisites
By this stage of the course you should have already:
- A running warehouse (BigQuery or postgres)
- A set of running pipelines ingesting the project dataset (week 3 completed)
- The following datasets ingested from the course [Datasets list](https://github.com/DataTalksClub/nyc-tlc-data/):
* Yellow taxi data - Years 2019 and 2020
* Green taxi data - Years 2019 and 2020
* fhv data - Year 2019.
> [!NOTE]
> * We have two quick hack to load that data quicker, follow [this video](https://www.youtube.com/watch?v=Mork172sK_c&list=PLaNLNpjZpzwgneiI-Gl8df8GCsPYp_6Bs) for option 1 or check instructions in [week3/extras](../03-data-warehouse/extras) for option 2
## Setting up your environment
> [!NOTE]
> the *cloud* setup is the preferred option.
>
> the *local* setup does not require a cloud database.
| Alternative A | Alternative B |
---|---|
| Setting up dbt for using BigQuery (cloud) | Setting up dbt for using Postgres locally |
|- Open a free developer dbt cloud account following [this link](https://www.getdbt.com/signup/)|- Open a free developer dbt cloud account following [this link](https://www.getdbt.com/signup/)<br><br> |
| - [Following these instructions to connect to your BigQuery instance]([https://docs.getdbt.com/docs/dbt-cloud/cloud-configuring-dbt-cloud/cloud-setting-up-bigquery-oauth](https://docs.getdbt.com/guides/bigquery?step=4)) | - follow the [official dbt documentation]([https://docs.getdbt.com/dbt-cli/installation](https://docs.getdbt.com/docs/core/installation-overview)) or <br>- follow the [dbt core with BigQuery on Docker](docker_setup/README.md) guide to setup dbt locally on docker or <br>- use a docker image from oficial [Install with Docker](https://docs.getdbt.com/docs/core/docker-install). |
|- More detailed instructions in [dbt_cloud_setup.md](dbt_cloud_setup.md) | - You will need to install the latest version with the BigQuery adapter (dbt-bigquery).|
| | - You will need to install the latest version with the postgres adapter (dbt-postgres).|
| | After local installation you will have to set up the connection to PG in the `profiles.yml`, you can find the templates [here](https://docs.getdbt.com/docs/core/connect-data-platform/postgres-setup) |
## Content
### Introduction to analytics engineering
* What is analytics engineering?
* ETL vs ELT
* Data modeling concepts (fact and dim tables)
[![](https://markdown-videos-api.jorgenkh.no/youtube/uF76d5EmdtU)](https://youtu.be/uF76d5EmdtU&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=40)
### What is dbt?
* Introduction to dbt
[![](https://markdown-videos-api.jorgenkh.no/youtube/4eCouvVOJUw)](https://www.youtube.com/watch?v=gsKuETFJr54&list=PLaNLNpjZpzwgneiI-Gl8df8GCsPYp_6Bs&index=5)
## Starting a dbt project
| Alternative A | Alternative B |
|-----------------------------|--------------------------------|
| Using BigQuery + dbt cloud | Using Postgres + dbt core (locally) |
| - Starting a new project with dbt init (dbt cloud and core)<br>- dbt cloud setup<br>- project.yml<br><br> | - Starting a new project with dbt init (dbt cloud and core)<br>- dbt core local setup<br>- profiles.yml<br>- project.yml |
| [![](https://markdown-videos-api.jorgenkh.no/youtube/iMxh6s_wL4Q)](https://www.youtube.com/watch?v=J0XCDyKiU64&list=PLaNLNpjZpzwgneiI-Gl8df8GCsPYp_6Bs&index=4) | [![](https://markdown-videos-api.jorgenkh.no/youtube/1HmL63e-vRs)](https://youtu.be/1HmL63e-vRs&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=43) |
### dbt models
* Anatomy of a dbt model: written code vs compiled Sources
* Materialisations: table, view, incremental, ephemeral
* Seeds, sources and ref
* Jinja and Macros
* Packages
* Variables
[![](https://markdown-videos-api.jorgenkh.no/youtube/UVI30Vxzd6c)](https://www.youtube.com/watch?v=ueVy2N54lyc&list=PLaNLNpjZpzwgneiI-Gl8df8GCsPYp_6Bs&index=3)
> [!NOTE]
> *This video is shown entirely on dbt cloud IDE but the same steps can be followed locally on the IDE of your choice*
> [!TIP]
>* If you recieve an error stating "Permission denied while globbing file pattern." when attempting to run `fact_trips.sql` this video may be helpful in resolving the issue
>
>[![](https://markdown-videos-api.jorgenkh.no/youtube/kL3ZVNL9Y4A)](https://youtu.be/kL3ZVNL9Y4A&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=34)
### Testing and documenting dbt models
* Tests
* Documentation
[![](https://markdown-videos-api.jorgenkh.no/youtube/UishFmq1hLM)](https://www.youtube.com/watch?v=2dNJXHFCHaY&list=PLaNLNpjZpzwgneiI-Gl8df8GCsPYp_6Bs&index=2)
>[!NOTE]
> *This video is shown entirely on dbt cloud IDE but the same steps can be followed locally on the IDE of your choice*
## Deployment
| Alternative A | Alternative B |
|-----------------------------|--------------------------------|
| Using BigQuery + dbt cloud | Using Postgres + dbt core (locally) |
| - Deployment: development environment vs production<br>- dbt cloud: scheduler, sources and hosted documentation | - Deployment: development environment vs production<br>- dbt cloud: scheduler, sources and hosted documentation |
| [![](https://markdown-videos-api.jorgenkh.no/youtube/rjf6yZNGX8I)](https://www.youtube.com/watch?v=V2m5C0n8Gro&list=PLaNLNpjZpzwgneiI-Gl8df8GCsPYp_6Bs&index=6) | [![](https://markdown-videos-api.jorgenkh.no/youtube/Cs9Od1pcrzM)](https://youtu.be/Cs9Od1pcrzM&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=47) |
## Visualising the transformed data
:movie_camera: Google data studio Video (Now renamed to Looker studio)
[![](https://markdown-videos-api.jorgenkh.no/youtube/39nLTs74A3E)](https://youtu.be/39nLTs74A3E&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=48)
:movie_camera: Metabase Video
[![](https://markdown-videos-api.jorgenkh.no/youtube/BnLkrA7a6gM)](https://youtu.be/BnLkrA7a6gM&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=49)
## Advanced concepts
* [Make a model Incremental](https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models)
* [Use of tags](https://docs.getdbt.com/reference/resource-configs/tags)
* [Hooks](https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations)
* [Analysis](https://docs.getdbt.com/docs/building-a-dbt-project/analyses)
* [Snapshots](https://docs.getdbt.com/docs/building-a-dbt-project/snapshots)
* [Exposure](https://docs.getdbt.com/docs/building-a-dbt-project/exposures)
* [Metrics](https://docs.getdbt.com/docs/building-a-dbt-project/metrics)
## Community notes
Did you take notes? You can share them here.
* [Notes by Alvaro Navas](https://github.com/ziritrion/dataeng-zoomcamp/blob/main/notes/4_analytics.md)
* [Sandy's DE learning blog](https://learningdataengineering540969211.wordpress.com/2022/02/17/week-4-setting-up-dbt-cloud-with-bigquery/)
* [Notes by Victor Padilha](https://github.com/padilha/de-zoomcamp/tree/master/week4)
* [Marcos Torregrosa's blog (spanish)](https://www.n4gash.com/2023/data-engineering-zoomcamp-semana-4/)
* [Notes by froukje](https://github.com/froukje/de-zoomcamp/blob/main/week_4_analytics_engineering/notes/notes_week_04.md)
* [Notes by Alain Boisvert](https://github.com/boisalai/de-zoomcamp-2023/blob/main/week4.md)
* [Setting up Prefect with dbt by Vera](https://medium.com/@verazabeida/zoomcamp-week-5-5b6a9d53a3a0)
* [Blog by Xia He-Bleinagel](https://xiahe-bleinagel.com/2023/02/week-4-data-engineering-zoomcamp-notes-analytics-engineering-and-dbt/)
* [Setting up DBT with BigQuery by Tofag](https://medium.com/@fagbuyit/setting-up-your-dbt-cloud-dej-9-d18e5b7c96ba)
* [Blog post by Dewi Oktaviani](https://medium.com/@oktavianidewi/de-zoomcamp-2023-learning-week-4-analytics-engineering-with-dbt-53f781803d3e)
* [Notes from Vincenzo Galante](https://binchentso.notion.site/Data-Talks-Club-Data-Engineering-Zoomcamp-8699af8e7ff94ec49e6f9bdec8eb69fd)
* [Notes from Balaji](https://github.com/Balajirvp/DE-Zoomcamp/blob/main/Week%204/Data%20Engineering%20Zoomcamp%20Week%204.ipynb)
* [Notes by Linda](https://github.com/inner-outer-space/de-zoomcamp-2024/blob/main/4-analytics-engineering/readme.md)
* [2024 - Videos transcript week4](https://drive.google.com/drive/folders/1V2sHWOotPEMQTdMT4IMki1fbMPTn3jOP?usp=drive)
* [Blog Post](https://www.jonahboliver.com/blog/de-zc-w4) by Jonah Oliver
* Add your notes here (above this line)
## Useful links
- [Slides used in the videos](https://docs.google.com/presentation/d/1xSll_jv0T8JF4rYZvLHfkJXYqUjPtThA/edit?usp=sharing&ouid=114544032874539580154&rtpof=true&sd=true)
- [Visualizing data with Metabase course](https://www.metabase.com/learn/visualization/)
- [dbt free courses](https://courses.getdbt.com/collections)

View File

@ -0,0 +1,5 @@
# you shouldn't commit these into source control
# these are the default directory names, adjust/add to fit your needs
target/
dbt_packages/
logs/

View File

@ -35,4 +35,4 @@ _Alternative: use `$ dbt build` to execute with one command the 3 steps above to
- Check out [Discourse](https://discourse.getdbt.com/) for commonly asked questions and answers
- Join the [chat](http://slack.getdbt.com/) on Slack for live discussions and support
- Find [dbt events](https://events.getdbt.com) near you
- Check out [the blog](https://blog.getdbt.com/) for the latest news on dbt's development and best practices
- Check out [the blog](https://blog.getdbt.com/) for the latest news on dbt's development and best practices

View File

@ -0,0 +1,49 @@
-- MAKE SURE YOU REPLACE taxi-rides-ny-339813-412521 WITH THE NAME OF YOUR DATASET!
-- When you run the query, only run 5 of the ALTER TABLE statements at one time (by highlighting only 5).
-- Otherwise BigQuery will say too many alterations to the table are being made.
CREATE TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata` as
SELECT * FROM `bigquery-public-data.new_york_taxi_trips.tlc_green_trips_2019`;
CREATE TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata` as
SELECT * FROM `bigquery-public-data.new_york_taxi_trips.tlc_yellow_trips_2019`;
insert into `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
SELECT * FROM `bigquery-public-data.new_york_taxi_trips.tlc_green_trips_2020` ;
insert into `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
SELECT * FROM `bigquery-public-data.new_york_taxi_trips.tlc_yellow_trips_2020`;
-- Fixes yellow table schema
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
RENAME COLUMN vendor_id TO VendorID;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
RENAME COLUMN pickup_datetime TO tpep_pickup_datetime;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
RENAME COLUMN dropoff_datetime TO tpep_dropoff_datetime;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
RENAME COLUMN rate_code TO RatecodeID;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
RENAME COLUMN imp_surcharge TO improvement_surcharge;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
RENAME COLUMN pickup_location_id TO PULocationID;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.yellow_tripdata`
RENAME COLUMN dropoff_location_id TO DOLocationID;
-- Fixes green table schema
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
RENAME COLUMN vendor_id TO VendorID;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
RENAME COLUMN pickup_datetime TO lpep_pickup_datetime;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
RENAME COLUMN dropoff_datetime TO lpep_dropoff_datetime;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
RENAME COLUMN rate_code TO RatecodeID;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
RENAME COLUMN imp_surcharge TO improvement_surcharge;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
RENAME COLUMN pickup_location_id TO PULocationID;
ALTER TABLE `taxi-rides-ny-339813-412521.trips_data_all.green_tripdata`
RENAME COLUMN dropoff_location_id TO DOLocationID;

View File

@ -7,13 +7,13 @@ version: '1.0.0'
config-version: 2
# This setting configures which "profile" dbt uses for this project.
profile: 'pg-dbt-workshop'
profile: 'default'
# These configurations specify where dbt should look for different types of files.
# The `source-paths` config, for example, states that models in this project can be
# The `model-paths` config, for example, states that models in this project can be
# found in the "models/" directory. You probably won't need to change these!
model-paths: ["models"]
analysis-paths: ["analysis"]
analysis-paths: ["analyses"]
test-paths: ["tests"]
seed-paths: ["seeds"]
macro-paths: ["macros"]
@ -21,17 +21,20 @@ snapshot-paths: ["snapshots"]
target-path: "target" # directory which will store compiled SQL files
clean-targets: # directories to be removed by `dbt clean`
- "target"
- "dbt_packages"
- "dbt_modules"
- "target"
- "dbt_packages"
# Configuring models
# Full documentation: https://docs.getdbt.com/docs/configuring-models
# In this example config, we tell dbt to build all models in the example/ directory
# as tables. These settings can be overridden in the individual model files
# In dbt, the default materialization for a model is a view. This means, when you run
# dbt run or dbt build, all of your models will be built as a view in your data platform.
# The configuration below will override this setting for models in the example folder to
# instead be materialized as tables. Any models you add to the root of the models folder will
# continue to be built as views. These settings can be overridden in the individual model files
# using the `{{ config(...) }}` macro.
models:
taxi_rides_ny:
# Applies to all files under models/.../
@ -46,4 +49,4 @@ seeds:
taxi_rides_ny:
taxi_zone_lookup:
+column_types:
locationid: numeric
locationid: numeric

View File

@ -1,18 +1,17 @@
{#
{#
This macro returns the description of the payment_type
#}
{% macro get_payment_type_description(payment_type) -%}
case {{ payment_type }}
case {{ dbt.safe_cast("payment_type", api.Column.translate_type("integer")) }}
when 1 then 'Credit card'
when 2 then 'Cash'
when 3 then 'No charge'
when 4 then 'Dispute'
when 5 then 'Unknown'
when 6 then 'Voided trip'
else 'EMPTY'
end
{%- endmacro %}
{%- endmacro %}

View File

@ -1,9 +1,8 @@
{{ config(materialized='table') }}
select
locationid,
borough,
zone,
replace(service_zone,'Boro','Green') as service_zone
replace(service_zone,'Boro','Green') as service_zone
from {{ ref('taxi_zone_lookup') }}

View File

@ -6,8 +6,7 @@ with trips_data as (
select
-- Reveneue grouping
pickup_zone as revenue_zone,
date_trunc('month', pickup_datetime) as revenue_month,
--Note: For BQ use instead: date_trunc(pickup_datetime, month) as revenue_month,
{{ dbt.date_trunc("month", "pickup_datetime") }} as revenue_month,
service_type,
@ -20,12 +19,11 @@ with trips_data as (
sum(ehail_fee) as revenue_monthly_ehail_fee,
sum(improvement_surcharge) as revenue_monthly_improvement_surcharge,
sum(total_amount) as revenue_monthly_total_amount,
sum(congestion_surcharge) as revenue_monthly_congestion_surcharge,
-- Additional calculations
count(tripid) as total_monthly_trips,
avg(passenger_count) as avg_montly_passenger_count,
avg(trip_distance) as avg_montly_trip_distance
avg(passenger_count) as avg_monthly_passenger_count,
avg(trip_distance) as avg_monthly_trip_distance
from trips_data
group by 1,2,3
group by 1,2,3

View File

@ -1,29 +1,29 @@
{{ config(materialized='table') }}
{{
config(
materialized='table'
)
}}
with green_data as (
with green_tripdata as (
select *,
'Green' as service_type
'Green' as service_type
from {{ ref('stg_green_tripdata') }}
),
yellow_data as (
yellow_tripdata as (
select *,
'Yellow' as service_type
from {{ ref('stg_yellow_tripdata') }}
),
trips_unioned as (
select * from green_data
union all
select * from yellow_data
select * from green_tripdata
union all
select * from yellow_tripdata
),
dim_zones as (
select * from {{ ref('dim_zones') }}
where borough != 'Unknown'
)
select
trips_unioned.tripid,
select trips_unioned.tripid,
trips_unioned.vendorid,
trips_unioned.service_type,
trips_unioned.ratecodeid,
@ -48,10 +48,9 @@ select
trips_unioned.improvement_surcharge,
trips_unioned.total_amount,
trips_unioned.payment_type,
trips_unioned.payment_type_description,
trips_unioned.congestion_surcharge
trips_unioned.payment_type_description
from trips_unioned
inner join dim_zones as pickup_zone
on trips_unioned.pickup_locationid = pickup_zone.locationid
inner join dim_zones as dropoff_zone
on trips_unioned.dropoff_locationid = dropoff_zone.locationid
on trips_unioned.dropoff_locationid = dropoff_zone.locationid

View File

@ -0,0 +1,129 @@
version: 2
models:
- name: dim_zones
description: >
List of unique zones idefied by locationid.
Includes the service zone they correspond to (Green or yellow).
- name: dm_monthly_zone_revenue
description: >
Aggregated table of all taxi trips corresponding to both service zones (Green and yellow) per pickup zone, month and service.
The table contains monthly sums of the fare elements used to calculate the monthly revenue.
The table contains also monthly indicators like number of trips, and average trip distance.
columns:
- name: revenue_monthly_total_amount
description: Monthly sum of the the total_amount of the fare charged for the trip per pickup zone, month and service.
tests:
- not_null:
severity: error
- name: fact_trips
description: >
Taxi trips corresponding to both service zones (Green and yellow).
The table contains records where both pickup and dropoff locations are valid and known zones.
Each record corresponds to a trip uniquely identified by tripid.
columns:
- name: tripid
data_type: string
description: "unique identifier conformed by the combination of vendorid and pickyp time"
- name: vendorid
data_type: int64
description: ""
- name: service_type
data_type: string
description: ""
- name: ratecodeid
data_type: int64
description: ""
- name: pickup_locationid
data_type: int64
description: ""
- name: pickup_borough
data_type: string
description: ""
- name: pickup_zone
data_type: string
description: ""
- name: dropoff_locationid
data_type: int64
description: ""
- name: dropoff_borough
data_type: string
description: ""
- name: dropoff_zone
data_type: string
description: ""
- name: pickup_datetime
data_type: timestamp
description: ""
- name: dropoff_datetime
data_type: timestamp
description: ""
- name: store_and_fwd_flag
data_type: string
description: ""
- name: passenger_count
data_type: int64
description: ""
- name: trip_distance
data_type: numeric
description: ""
- name: trip_type
data_type: int64
description: ""
- name: fare_amount
data_type: numeric
description: ""
- name: extra
data_type: numeric
description: ""
- name: mta_tax
data_type: numeric
description: ""
- name: tip_amount
data_type: numeric
description: ""
- name: tolls_amount
data_type: numeric
description: ""
- name: ehail_fee
data_type: numeric
description: ""
- name: improvement_surcharge
data_type: numeric
description: ""
- name: total_amount
data_type: numeric
description: ""
- name: payment_type
data_type: int64
description: ""
- name: payment_type_description
data_type: string
description: ""

View File

@ -1,20 +1,13 @@
version: 2
sources:
- name: staging
#For bigquery:
#database: taxi-rides-ny-339813
# For postgres:
database: production
schema: trips_data_all
- name: staging
database: "{{ env_var('DBT_DATABASE', 'taxi-rides-ny-339813-412521') }}"
schema: "{{ env_var('DBT_SCHEMA', 'trips_data_all') }}"
# loaded_at_field: record_loaded_at
tables:
- name: green_tripdata
- name: yellow_tripdata
tables:
- name: green_tripdata
- name: yellow_tripdata
# freshness:
# error_after: {count: 6, period: hour}
@ -75,7 +68,7 @@ models:
memory before sending to the vendor, aka “store and forward,”
because the vehicle did not have a connection to the server.
Y= store and forward trip
N= not a store and forward trip
N = not a store and forward trip
- name: Dropoff_longitude
description: Longitude where the meter was disengaged.
- name: Dropoff_latitude
@ -200,4 +193,4 @@ models:
- name: Tolls_amount
description: Total amount of all tolls paid in trip.
- name: Total_amount
description: The total amount charged to passengers. Does not include cash tips.
description: The total amount charged to passengers. Does not include cash tips.

View File

@ -0,0 +1,52 @@
{{
config(
materialized='view'
)
}}
with tripdata as
(
select *,
row_number() over(partition by vendorid, lpep_pickup_datetime) as rn
from {{ source('staging','green_tripdata') }}
where vendorid is not null
)
select
-- identifiers
{{ dbt_utils.generate_surrogate_key(['vendorid', 'lpep_pickup_datetime']) }} as tripid,
{{ dbt.safe_cast("vendorid", api.Column.translate_type("integer")) }} as vendorid,
{{ dbt.safe_cast("ratecodeid", api.Column.translate_type("integer")) }} as ratecodeid,
{{ dbt.safe_cast("pulocationid", api.Column.translate_type("integer")) }} as pickup_locationid,
{{ dbt.safe_cast("dolocationid", api.Column.translate_type("integer")) }} as dropoff_locationid,
-- timestamps
cast(lpep_pickup_datetime as timestamp) as pickup_datetime,
cast(lpep_dropoff_datetime as timestamp) as dropoff_datetime,
-- trip info
store_and_fwd_flag,
{{ dbt.safe_cast("passenger_count", api.Column.translate_type("integer")) }} as passenger_count,
cast(trip_distance as numeric) as trip_distance,
{{ dbt.safe_cast("trip_type", api.Column.translate_type("integer")) }} as trip_type,
-- payment info
cast(fare_amount as numeric) as fare_amount,
cast(extra as numeric) as extra,
cast(mta_tax as numeric) as mta_tax,
cast(tip_amount as numeric) as tip_amount,
cast(tolls_amount as numeric) as tolls_amount,
cast(ehail_fee as numeric) as ehail_fee,
cast(improvement_surcharge as numeric) as improvement_surcharge,
cast(total_amount as numeric) as total_amount,
coalesce({{ dbt.safe_cast("payment_type", api.Column.translate_type("integer")) }},0) as payment_type,
{{ get_payment_type_description("payment_type") }} as payment_type_description
from tripdata
where rn = 1
-- dbt build --select <model_name> --vars '{'is_test_run': 'false'}'
{% if var('is_test_run', default=true) %}
limit 100
{% endif %}

View File

@ -9,19 +9,19 @@ with tripdata as
)
select
-- identifiers
{{ dbt_utils.surrogate_key(['vendorid', 'tpep_pickup_datetime']) }} as tripid,
cast(vendorid as integer) as vendorid,
cast(ratecodeid as integer) as ratecodeid,
cast(pulocationid as integer) as pickup_locationid,
cast(dolocationid as integer) as dropoff_locationid,
{{ dbt_utils.generate_surrogate_key(['vendorid', 'tpep_pickup_datetime']) }} as tripid,
{{ dbt.safe_cast("vendorid", api.Column.translate_type("integer")) }} as vendorid,
{{ dbt.safe_cast("ratecodeid", api.Column.translate_type("integer")) }} as ratecodeid,
{{ dbt.safe_cast("pulocationid", api.Column.translate_type("integer")) }} as pickup_locationid,
{{ dbt.safe_cast("dolocationid", api.Column.translate_type("integer")) }} as dropoff_locationid,
-- timestamps
cast(tpep_pickup_datetime as timestamp) as pickup_datetime,
cast(tpep_dropoff_datetime as timestamp) as dropoff_datetime,
-- trip info
store_and_fwd_flag,
cast(passenger_count as integer) as passenger_count,
{{ dbt.safe_cast("passenger_count", api.Column.translate_type("integer")) }} as passenger_count,
cast(trip_distance as numeric) as trip_distance,
-- yellow cabs are always street-hail
1 as trip_type,
@ -35,16 +35,14 @@ select
cast(0 as numeric) as ehail_fee,
cast(improvement_surcharge as numeric) as improvement_surcharge,
cast(total_amount as numeric) as total_amount,
cast(payment_type as integer) as payment_type,
{{ get_payment_type_description('payment_type') }} as payment_type_description,
cast(congestion_surcharge as numeric) as congestion_surcharge
coalesce({{ dbt.safe_cast("payment_type", api.Column.translate_type("integer")) }},0) as payment_type,
{{ get_payment_type_description('payment_type') }} as payment_type_description
from tripdata
where rn = 1
-- dbt build --m <model.sql> --var 'is_test_run: false'
-- dbt build --select <model.sql> --vars '{'is_test_run: false}'
{% if var('is_test_run', default=true) %}
limit 100
{% endif %}
{% endif %}

View File

@ -0,0 +1,6 @@
packages:
- package: dbt-labs/dbt_utils
version: 1.1.1
- package: dbt-labs/codegen
version: 0.12.1
sha1_hash: d974113b0f072cce35300077208f38581075ab40

View File

@ -0,0 +1,5 @@
packages:
- package: dbt-labs/dbt_utils
version: 1.1.1
- package: dbt-labs/codegen
version: 0.12.1

View File

@ -6,5 +6,4 @@ seeds:
Taxi Zones roughly based on NYC Department of City Planning's Neighborhood
Tabulation Areas (NTAs) and are meant to approximate neighborhoods, so you can see which
neighborhood a passenger was picked up in, and which neighborhood they were dropped off in.
Includes associated service_zone (EWR, Boro Zone, Yellow Zone)
Includes associated service_zone (EWR, Boro Zone, Yellow Zone)

View File

@ -1,266 +1,266 @@
"locationid","borough","zone","service_zone"
1,"EWR","Newark Airport","EWR"
2,"Queens","Jamaica Bay","Boro Zone"
3,"Bronx","Allerton/Pelham Gardens","Boro Zone"
4,"Manhattan","Alphabet City","Yellow Zone"
5,"Staten Island","Arden Heights","Boro Zone"
6,"Staten Island","Arrochar/Fort Wadsworth","Boro Zone"
7,"Queens","Astoria","Boro Zone"
8,"Queens","Astoria Park","Boro Zone"
9,"Queens","Auburndale","Boro Zone"
10,"Queens","Baisley Park","Boro Zone"
11,"Brooklyn","Bath Beach","Boro Zone"
12,"Manhattan","Battery Park","Yellow Zone"
13,"Manhattan","Battery Park City","Yellow Zone"
14,"Brooklyn","Bay Ridge","Boro Zone"
15,"Queens","Bay Terrace/Fort Totten","Boro Zone"
16,"Queens","Bayside","Boro Zone"
17,"Brooklyn","Bedford","Boro Zone"
18,"Bronx","Bedford Park","Boro Zone"
19,"Queens","Bellerose","Boro Zone"
20,"Bronx","Belmont","Boro Zone"
21,"Brooklyn","Bensonhurst East","Boro Zone"
22,"Brooklyn","Bensonhurst West","Boro Zone"
23,"Staten Island","Bloomfield/Emerson Hill","Boro Zone"
24,"Manhattan","Bloomingdale","Yellow Zone"
25,"Brooklyn","Boerum Hill","Boro Zone"
26,"Brooklyn","Borough Park","Boro Zone"
27,"Queens","Breezy Point/Fort Tilden/Riis Beach","Boro Zone"
28,"Queens","Briarwood/Jamaica Hills","Boro Zone"
29,"Brooklyn","Brighton Beach","Boro Zone"
30,"Queens","Broad Channel","Boro Zone"
31,"Bronx","Bronx Park","Boro Zone"
32,"Bronx","Bronxdale","Boro Zone"
33,"Brooklyn","Brooklyn Heights","Boro Zone"
34,"Brooklyn","Brooklyn Navy Yard","Boro Zone"
35,"Brooklyn","Brownsville","Boro Zone"
36,"Brooklyn","Bushwick North","Boro Zone"
37,"Brooklyn","Bushwick South","Boro Zone"
38,"Queens","Cambria Heights","Boro Zone"
39,"Brooklyn","Canarsie","Boro Zone"
40,"Brooklyn","Carroll Gardens","Boro Zone"
41,"Manhattan","Central Harlem","Boro Zone"
42,"Manhattan","Central Harlem North","Boro Zone"
43,"Manhattan","Central Park","Yellow Zone"
44,"Staten Island","Charleston/Tottenville","Boro Zone"
45,"Manhattan","Chinatown","Yellow Zone"
46,"Bronx","City Island","Boro Zone"
47,"Bronx","Claremont/Bathgate","Boro Zone"
48,"Manhattan","Clinton East","Yellow Zone"
49,"Brooklyn","Clinton Hill","Boro Zone"
50,"Manhattan","Clinton West","Yellow Zone"
51,"Bronx","Co-Op City","Boro Zone"
52,"Brooklyn","Cobble Hill","Boro Zone"
53,"Queens","College Point","Boro Zone"
54,"Brooklyn","Columbia Street","Boro Zone"
55,"Brooklyn","Coney Island","Boro Zone"
56,"Queens","Corona","Boro Zone"
57,"Queens","Corona","Boro Zone"
58,"Bronx","Country Club","Boro Zone"
59,"Bronx","Crotona Park","Boro Zone"
60,"Bronx","Crotona Park East","Boro Zone"
61,"Brooklyn","Crown Heights North","Boro Zone"
62,"Brooklyn","Crown Heights South","Boro Zone"
63,"Brooklyn","Cypress Hills","Boro Zone"
64,"Queens","Douglaston","Boro Zone"
65,"Brooklyn","Downtown Brooklyn/MetroTech","Boro Zone"
66,"Brooklyn","DUMBO/Vinegar Hill","Boro Zone"
67,"Brooklyn","Dyker Heights","Boro Zone"
68,"Manhattan","East Chelsea","Yellow Zone"
69,"Bronx","East Concourse/Concourse Village","Boro Zone"
70,"Queens","East Elmhurst","Boro Zone"
71,"Brooklyn","East Flatbush/Farragut","Boro Zone"
72,"Brooklyn","East Flatbush/Remsen Village","Boro Zone"
73,"Queens","East Flushing","Boro Zone"
74,"Manhattan","East Harlem North","Boro Zone"
75,"Manhattan","East Harlem South","Boro Zone"
76,"Brooklyn","East New York","Boro Zone"
77,"Brooklyn","East New York/Pennsylvania Avenue","Boro Zone"
78,"Bronx","East Tremont","Boro Zone"
79,"Manhattan","East Village","Yellow Zone"
80,"Brooklyn","East Williamsburg","Boro Zone"
81,"Bronx","Eastchester","Boro Zone"
82,"Queens","Elmhurst","Boro Zone"
83,"Queens","Elmhurst/Maspeth","Boro Zone"
84,"Staten Island","Eltingville/Annadale/Prince's Bay","Boro Zone"
85,"Brooklyn","Erasmus","Boro Zone"
86,"Queens","Far Rockaway","Boro Zone"
87,"Manhattan","Financial District North","Yellow Zone"
88,"Manhattan","Financial District South","Yellow Zone"
89,"Brooklyn","Flatbush/Ditmas Park","Boro Zone"
90,"Manhattan","Flatiron","Yellow Zone"
91,"Brooklyn","Flatlands","Boro Zone"
92,"Queens","Flushing","Boro Zone"
93,"Queens","Flushing Meadows-Corona Park","Boro Zone"
94,"Bronx","Fordham South","Boro Zone"
95,"Queens","Forest Hills","Boro Zone"
96,"Queens","Forest Park/Highland Park","Boro Zone"
97,"Brooklyn","Fort Greene","Boro Zone"
98,"Queens","Fresh Meadows","Boro Zone"
99,"Staten Island","Freshkills Park","Boro Zone"
100,"Manhattan","Garment District","Yellow Zone"
101,"Queens","Glen Oaks","Boro Zone"
102,"Queens","Glendale","Boro Zone"
103,"Manhattan","Governor's Island/Ellis Island/Liberty Island","Yellow Zone"
104,"Manhattan","Governor's Island/Ellis Island/Liberty Island","Yellow Zone"
105,"Manhattan","Governor's Island/Ellis Island/Liberty Island","Yellow Zone"
106,"Brooklyn","Gowanus","Boro Zone"
107,"Manhattan","Gramercy","Yellow Zone"
108,"Brooklyn","Gravesend","Boro Zone"
109,"Staten Island","Great Kills","Boro Zone"
110,"Staten Island","Great Kills Park","Boro Zone"
111,"Brooklyn","Green-Wood Cemetery","Boro Zone"
112,"Brooklyn","Greenpoint","Boro Zone"
113,"Manhattan","Greenwich Village North","Yellow Zone"
114,"Manhattan","Greenwich Village South","Yellow Zone"
115,"Staten Island","Grymes Hill/Clifton","Boro Zone"
116,"Manhattan","Hamilton Heights","Boro Zone"
117,"Queens","Hammels/Arverne","Boro Zone"
118,"Staten Island","Heartland Village/Todt Hill","Boro Zone"
119,"Bronx","Highbridge","Boro Zone"
120,"Manhattan","Highbridge Park","Boro Zone"
121,"Queens","Hillcrest/Pomonok","Boro Zone"
122,"Queens","Hollis","Boro Zone"
123,"Brooklyn","Homecrest","Boro Zone"
124,"Queens","Howard Beach","Boro Zone"
125,"Manhattan","Hudson Sq","Yellow Zone"
126,"Bronx","Hunts Point","Boro Zone"
127,"Manhattan","Inwood","Boro Zone"
128,"Manhattan","Inwood Hill Park","Boro Zone"
129,"Queens","Jackson Heights","Boro Zone"
130,"Queens","Jamaica","Boro Zone"
131,"Queens","Jamaica Estates","Boro Zone"
132,"Queens","JFK Airport","Airports"
133,"Brooklyn","Kensington","Boro Zone"
134,"Queens","Kew Gardens","Boro Zone"
135,"Queens","Kew Gardens Hills","Boro Zone"
136,"Bronx","Kingsbridge Heights","Boro Zone"
137,"Manhattan","Kips Bay","Yellow Zone"
138,"Queens","LaGuardia Airport","Airports"
139,"Queens","Laurelton","Boro Zone"
140,"Manhattan","Lenox Hill East","Yellow Zone"
141,"Manhattan","Lenox Hill West","Yellow Zone"
142,"Manhattan","Lincoln Square East","Yellow Zone"
143,"Manhattan","Lincoln Square West","Yellow Zone"
144,"Manhattan","Little Italy/NoLiTa","Yellow Zone"
145,"Queens","Long Island City/Hunters Point","Boro Zone"
146,"Queens","Long Island City/Queens Plaza","Boro Zone"
147,"Bronx","Longwood","Boro Zone"
148,"Manhattan","Lower East Side","Yellow Zone"
149,"Brooklyn","Madison","Boro Zone"
150,"Brooklyn","Manhattan Beach","Boro Zone"
151,"Manhattan","Manhattan Valley","Yellow Zone"
152,"Manhattan","Manhattanville","Boro Zone"
153,"Manhattan","Marble Hill","Boro Zone"
154,"Brooklyn","Marine Park/Floyd Bennett Field","Boro Zone"
155,"Brooklyn","Marine Park/Mill Basin","Boro Zone"
156,"Staten Island","Mariners Harbor","Boro Zone"
157,"Queens","Maspeth","Boro Zone"
158,"Manhattan","Meatpacking/West Village West","Yellow Zone"
159,"Bronx","Melrose South","Boro Zone"
160,"Queens","Middle Village","Boro Zone"
161,"Manhattan","Midtown Center","Yellow Zone"
162,"Manhattan","Midtown East","Yellow Zone"
163,"Manhattan","Midtown North","Yellow Zone"
164,"Manhattan","Midtown South","Yellow Zone"
165,"Brooklyn","Midwood","Boro Zone"
166,"Manhattan","Morningside Heights","Boro Zone"
167,"Bronx","Morrisania/Melrose","Boro Zone"
168,"Bronx","Mott Haven/Port Morris","Boro Zone"
169,"Bronx","Mount Hope","Boro Zone"
170,"Manhattan","Murray Hill","Yellow Zone"
171,"Queens","Murray Hill-Queens","Boro Zone"
172,"Staten Island","New Dorp/Midland Beach","Boro Zone"
173,"Queens","North Corona","Boro Zone"
174,"Bronx","Norwood","Boro Zone"
175,"Queens","Oakland Gardens","Boro Zone"
176,"Staten Island","Oakwood","Boro Zone"
177,"Brooklyn","Ocean Hill","Boro Zone"
178,"Brooklyn","Ocean Parkway South","Boro Zone"
179,"Queens","Old Astoria","Boro Zone"
180,"Queens","Ozone Park","Boro Zone"
181,"Brooklyn","Park Slope","Boro Zone"
182,"Bronx","Parkchester","Boro Zone"
183,"Bronx","Pelham Bay","Boro Zone"
184,"Bronx","Pelham Bay Park","Boro Zone"
185,"Bronx","Pelham Parkway","Boro Zone"
186,"Manhattan","Penn Station/Madison Sq West","Yellow Zone"
187,"Staten Island","Port Richmond","Boro Zone"
188,"Brooklyn","Prospect-Lefferts Gardens","Boro Zone"
189,"Brooklyn","Prospect Heights","Boro Zone"
190,"Brooklyn","Prospect Park","Boro Zone"
191,"Queens","Queens Village","Boro Zone"
192,"Queens","Queensboro Hill","Boro Zone"
193,"Queens","Queensbridge/Ravenswood","Boro Zone"
194,"Manhattan","Randalls Island","Yellow Zone"
195,"Brooklyn","Red Hook","Boro Zone"
196,"Queens","Rego Park","Boro Zone"
197,"Queens","Richmond Hill","Boro Zone"
198,"Queens","Ridgewood","Boro Zone"
199,"Bronx","Rikers Island","Boro Zone"
200,"Bronx","Riverdale/North Riverdale/Fieldston","Boro Zone"
201,"Queens","Rockaway Park","Boro Zone"
202,"Manhattan","Roosevelt Island","Boro Zone"
203,"Queens","Rosedale","Boro Zone"
204,"Staten Island","Rossville/Woodrow","Boro Zone"
205,"Queens","Saint Albans","Boro Zone"
206,"Staten Island","Saint George/New Brighton","Boro Zone"
207,"Queens","Saint Michaels Cemetery/Woodside","Boro Zone"
208,"Bronx","Schuylerville/Edgewater Park","Boro Zone"
209,"Manhattan","Seaport","Yellow Zone"
210,"Brooklyn","Sheepshead Bay","Boro Zone"
211,"Manhattan","SoHo","Yellow Zone"
212,"Bronx","Soundview/Bruckner","Boro Zone"
213,"Bronx","Soundview/Castle Hill","Boro Zone"
214,"Staten Island","South Beach/Dongan Hills","Boro Zone"
215,"Queens","South Jamaica","Boro Zone"
216,"Queens","South Ozone Park","Boro Zone"
217,"Brooklyn","South Williamsburg","Boro Zone"
218,"Queens","Springfield Gardens North","Boro Zone"
219,"Queens","Springfield Gardens South","Boro Zone"
220,"Bronx","Spuyten Duyvil/Kingsbridge","Boro Zone"
221,"Staten Island","Stapleton","Boro Zone"
222,"Brooklyn","Starrett City","Boro Zone"
223,"Queens","Steinway","Boro Zone"
224,"Manhattan","Stuy Town/Peter Cooper Village","Yellow Zone"
225,"Brooklyn","Stuyvesant Heights","Boro Zone"
226,"Queens","Sunnyside","Boro Zone"
227,"Brooklyn","Sunset Park East","Boro Zone"
228,"Brooklyn","Sunset Park West","Boro Zone"
229,"Manhattan","Sutton Place/Turtle Bay North","Yellow Zone"
230,"Manhattan","Times Sq/Theatre District","Yellow Zone"
231,"Manhattan","TriBeCa/Civic Center","Yellow Zone"
232,"Manhattan","Two Bridges/Seward Park","Yellow Zone"
233,"Manhattan","UN/Turtle Bay South","Yellow Zone"
234,"Manhattan","Union Sq","Yellow Zone"
235,"Bronx","University Heights/Morris Heights","Boro Zone"
236,"Manhattan","Upper East Side North","Yellow Zone"
237,"Manhattan","Upper East Side South","Yellow Zone"
238,"Manhattan","Upper West Side North","Yellow Zone"
239,"Manhattan","Upper West Side South","Yellow Zone"
240,"Bronx","Van Cortlandt Park","Boro Zone"
241,"Bronx","Van Cortlandt Village","Boro Zone"
242,"Bronx","Van Nest/Morris Park","Boro Zone"
243,"Manhattan","Washington Heights North","Boro Zone"
244,"Manhattan","Washington Heights South","Boro Zone"
245,"Staten Island","West Brighton","Boro Zone"
246,"Manhattan","West Chelsea/Hudson Yards","Yellow Zone"
247,"Bronx","West Concourse","Boro Zone"
248,"Bronx","West Farms/Bronx River","Boro Zone"
249,"Manhattan","West Village","Yellow Zone"
250,"Bronx","Westchester Village/Unionport","Boro Zone"
251,"Staten Island","Westerleigh","Boro Zone"
252,"Queens","Whitestone","Boro Zone"
253,"Queens","Willets Point","Boro Zone"
254,"Bronx","Williamsbridge/Olinville","Boro Zone"
255,"Brooklyn","Williamsburg (North Side)","Boro Zone"
256,"Brooklyn","Williamsburg (South Side)","Boro Zone"
257,"Brooklyn","Windsor Terrace","Boro Zone"
258,"Queens","Woodhaven","Boro Zone"
259,"Bronx","Woodlawn/Wakefield","Boro Zone"
260,"Queens","Woodside","Boro Zone"
261,"Manhattan","World Trade Center","Yellow Zone"
262,"Manhattan","Yorkville East","Yellow Zone"
263,"Manhattan","Yorkville West","Yellow Zone"
264,"Unknown","NV","N/A"
265,"Unknown","NA","N/A"
"locationid","borough","zone","service_zone"
1,"EWR","Newark Airport","EWR"
2,"Queens","Jamaica Bay","Boro Zone"
3,"Bronx","Allerton/Pelham Gardens","Boro Zone"
4,"Manhattan","Alphabet City","Yellow Zone"
5,"Staten Island","Arden Heights","Boro Zone"
6,"Staten Island","Arrochar/Fort Wadsworth","Boro Zone"
7,"Queens","Astoria","Boro Zone"
8,"Queens","Astoria Park","Boro Zone"
9,"Queens","Auburndale","Boro Zone"
10,"Queens","Baisley Park","Boro Zone"
11,"Brooklyn","Bath Beach","Boro Zone"
12,"Manhattan","Battery Park","Yellow Zone"
13,"Manhattan","Battery Park City","Yellow Zone"
14,"Brooklyn","Bay Ridge","Boro Zone"
15,"Queens","Bay Terrace/Fort Totten","Boro Zone"
16,"Queens","Bayside","Boro Zone"
17,"Brooklyn","Bedford","Boro Zone"
18,"Bronx","Bedford Park","Boro Zone"
19,"Queens","Bellerose","Boro Zone"
20,"Bronx","Belmont","Boro Zone"
21,"Brooklyn","Bensonhurst East","Boro Zone"
22,"Brooklyn","Bensonhurst West","Boro Zone"
23,"Staten Island","Bloomfield/Emerson Hill","Boro Zone"
24,"Manhattan","Bloomingdale","Yellow Zone"
25,"Brooklyn","Boerum Hill","Boro Zone"
26,"Brooklyn","Borough Park","Boro Zone"
27,"Queens","Breezy Point/Fort Tilden/Riis Beach","Boro Zone"
28,"Queens","Briarwood/Jamaica Hills","Boro Zone"
29,"Brooklyn","Brighton Beach","Boro Zone"
30,"Queens","Broad Channel","Boro Zone"
31,"Bronx","Bronx Park","Boro Zone"
32,"Bronx","Bronxdale","Boro Zone"
33,"Brooklyn","Brooklyn Heights","Boro Zone"
34,"Brooklyn","Brooklyn Navy Yard","Boro Zone"
35,"Brooklyn","Brownsville","Boro Zone"
36,"Brooklyn","Bushwick North","Boro Zone"
37,"Brooklyn","Bushwick South","Boro Zone"
38,"Queens","Cambria Heights","Boro Zone"
39,"Brooklyn","Canarsie","Boro Zone"
40,"Brooklyn","Carroll Gardens","Boro Zone"
41,"Manhattan","Central Harlem","Boro Zone"
42,"Manhattan","Central Harlem North","Boro Zone"
43,"Manhattan","Central Park","Yellow Zone"
44,"Staten Island","Charleston/Tottenville","Boro Zone"
45,"Manhattan","Chinatown","Yellow Zone"
46,"Bronx","City Island","Boro Zone"
47,"Bronx","Claremont/Bathgate","Boro Zone"
48,"Manhattan","Clinton East","Yellow Zone"
49,"Brooklyn","Clinton Hill","Boro Zone"
50,"Manhattan","Clinton West","Yellow Zone"
51,"Bronx","Co-Op City","Boro Zone"
52,"Brooklyn","Cobble Hill","Boro Zone"
53,"Queens","College Point","Boro Zone"
54,"Brooklyn","Columbia Street","Boro Zone"
55,"Brooklyn","Coney Island","Boro Zone"
56,"Queens","Corona","Boro Zone"
57,"Queens","Corona","Boro Zone"
58,"Bronx","Country Club","Boro Zone"
59,"Bronx","Crotona Park","Boro Zone"
60,"Bronx","Crotona Park East","Boro Zone"
61,"Brooklyn","Crown Heights North","Boro Zone"
62,"Brooklyn","Crown Heights South","Boro Zone"
63,"Brooklyn","Cypress Hills","Boro Zone"
64,"Queens","Douglaston","Boro Zone"
65,"Brooklyn","Downtown Brooklyn/MetroTech","Boro Zone"
66,"Brooklyn","DUMBO/Vinegar Hill","Boro Zone"
67,"Brooklyn","Dyker Heights","Boro Zone"
68,"Manhattan","East Chelsea","Yellow Zone"
69,"Bronx","East Concourse/Concourse Village","Boro Zone"
70,"Queens","East Elmhurst","Boro Zone"
71,"Brooklyn","East Flatbush/Farragut","Boro Zone"
72,"Brooklyn","East Flatbush/Remsen Village","Boro Zone"
73,"Queens","East Flushing","Boro Zone"
74,"Manhattan","East Harlem North","Boro Zone"
75,"Manhattan","East Harlem South","Boro Zone"
76,"Brooklyn","East New York","Boro Zone"
77,"Brooklyn","East New York/Pennsylvania Avenue","Boro Zone"
78,"Bronx","East Tremont","Boro Zone"
79,"Manhattan","East Village","Yellow Zone"
80,"Brooklyn","East Williamsburg","Boro Zone"
81,"Bronx","Eastchester","Boro Zone"
82,"Queens","Elmhurst","Boro Zone"
83,"Queens","Elmhurst/Maspeth","Boro Zone"
84,"Staten Island","Eltingville/Annadale/Prince's Bay","Boro Zone"
85,"Brooklyn","Erasmus","Boro Zone"
86,"Queens","Far Rockaway","Boro Zone"
87,"Manhattan","Financial District North","Yellow Zone"
88,"Manhattan","Financial District South","Yellow Zone"
89,"Brooklyn","Flatbush/Ditmas Park","Boro Zone"
90,"Manhattan","Flatiron","Yellow Zone"
91,"Brooklyn","Flatlands","Boro Zone"
92,"Queens","Flushing","Boro Zone"
93,"Queens","Flushing Meadows-Corona Park","Boro Zone"
94,"Bronx","Fordham South","Boro Zone"
95,"Queens","Forest Hills","Boro Zone"
96,"Queens","Forest Park/Highland Park","Boro Zone"
97,"Brooklyn","Fort Greene","Boro Zone"
98,"Queens","Fresh Meadows","Boro Zone"
99,"Staten Island","Freshkills Park","Boro Zone"
100,"Manhattan","Garment District","Yellow Zone"
101,"Queens","Glen Oaks","Boro Zone"
102,"Queens","Glendale","Boro Zone"
103,"Manhattan","Governor's Island/Ellis Island/Liberty Island","Yellow Zone"
104,"Manhattan","Governor's Island/Ellis Island/Liberty Island","Yellow Zone"
105,"Manhattan","Governor's Island/Ellis Island/Liberty Island","Yellow Zone"
106,"Brooklyn","Gowanus","Boro Zone"
107,"Manhattan","Gramercy","Yellow Zone"
108,"Brooklyn","Gravesend","Boro Zone"
109,"Staten Island","Great Kills","Boro Zone"
110,"Staten Island","Great Kills Park","Boro Zone"
111,"Brooklyn","Green-Wood Cemetery","Boro Zone"
112,"Brooklyn","Greenpoint","Boro Zone"
113,"Manhattan","Greenwich Village North","Yellow Zone"
114,"Manhattan","Greenwich Village South","Yellow Zone"
115,"Staten Island","Grymes Hill/Clifton","Boro Zone"
116,"Manhattan","Hamilton Heights","Boro Zone"
117,"Queens","Hammels/Arverne","Boro Zone"
118,"Staten Island","Heartland Village/Todt Hill","Boro Zone"
119,"Bronx","Highbridge","Boro Zone"
120,"Manhattan","Highbridge Park","Boro Zone"
121,"Queens","Hillcrest/Pomonok","Boro Zone"
122,"Queens","Hollis","Boro Zone"
123,"Brooklyn","Homecrest","Boro Zone"
124,"Queens","Howard Beach","Boro Zone"
125,"Manhattan","Hudson Sq","Yellow Zone"
126,"Bronx","Hunts Point","Boro Zone"
127,"Manhattan","Inwood","Boro Zone"
128,"Manhattan","Inwood Hill Park","Boro Zone"
129,"Queens","Jackson Heights","Boro Zone"
130,"Queens","Jamaica","Boro Zone"
131,"Queens","Jamaica Estates","Boro Zone"
132,"Queens","JFK Airport","Airports"
133,"Brooklyn","Kensington","Boro Zone"
134,"Queens","Kew Gardens","Boro Zone"
135,"Queens","Kew Gardens Hills","Boro Zone"
136,"Bronx","Kingsbridge Heights","Boro Zone"
137,"Manhattan","Kips Bay","Yellow Zone"
138,"Queens","LaGuardia Airport","Airports"
139,"Queens","Laurelton","Boro Zone"
140,"Manhattan","Lenox Hill East","Yellow Zone"
141,"Manhattan","Lenox Hill West","Yellow Zone"
142,"Manhattan","Lincoln Square East","Yellow Zone"
143,"Manhattan","Lincoln Square West","Yellow Zone"
144,"Manhattan","Little Italy/NoLiTa","Yellow Zone"
145,"Queens","Long Island City/Hunters Point","Boro Zone"
146,"Queens","Long Island City/Queens Plaza","Boro Zone"
147,"Bronx","Longwood","Boro Zone"
148,"Manhattan","Lower East Side","Yellow Zone"
149,"Brooklyn","Madison","Boro Zone"
150,"Brooklyn","Manhattan Beach","Boro Zone"
151,"Manhattan","Manhattan Valley","Yellow Zone"
152,"Manhattan","Manhattanville","Boro Zone"
153,"Manhattan","Marble Hill","Boro Zone"
154,"Brooklyn","Marine Park/Floyd Bennett Field","Boro Zone"
155,"Brooklyn","Marine Park/Mill Basin","Boro Zone"
156,"Staten Island","Mariners Harbor","Boro Zone"
157,"Queens","Maspeth","Boro Zone"
158,"Manhattan","Meatpacking/West Village West","Yellow Zone"
159,"Bronx","Melrose South","Boro Zone"
160,"Queens","Middle Village","Boro Zone"
161,"Manhattan","Midtown Center","Yellow Zone"
162,"Manhattan","Midtown East","Yellow Zone"
163,"Manhattan","Midtown North","Yellow Zone"
164,"Manhattan","Midtown South","Yellow Zone"
165,"Brooklyn","Midwood","Boro Zone"
166,"Manhattan","Morningside Heights","Boro Zone"
167,"Bronx","Morrisania/Melrose","Boro Zone"
168,"Bronx","Mott Haven/Port Morris","Boro Zone"
169,"Bronx","Mount Hope","Boro Zone"
170,"Manhattan","Murray Hill","Yellow Zone"
171,"Queens","Murray Hill-Queens","Boro Zone"
172,"Staten Island","New Dorp/Midland Beach","Boro Zone"
173,"Queens","North Corona","Boro Zone"
174,"Bronx","Norwood","Boro Zone"
175,"Queens","Oakland Gardens","Boro Zone"
176,"Staten Island","Oakwood","Boro Zone"
177,"Brooklyn","Ocean Hill","Boro Zone"
178,"Brooklyn","Ocean Parkway South","Boro Zone"
179,"Queens","Old Astoria","Boro Zone"
180,"Queens","Ozone Park","Boro Zone"
181,"Brooklyn","Park Slope","Boro Zone"
182,"Bronx","Parkchester","Boro Zone"
183,"Bronx","Pelham Bay","Boro Zone"
184,"Bronx","Pelham Bay Park","Boro Zone"
185,"Bronx","Pelham Parkway","Boro Zone"
186,"Manhattan","Penn Station/Madison Sq West","Yellow Zone"
187,"Staten Island","Port Richmond","Boro Zone"
188,"Brooklyn","Prospect-Lefferts Gardens","Boro Zone"
189,"Brooklyn","Prospect Heights","Boro Zone"
190,"Brooklyn","Prospect Park","Boro Zone"
191,"Queens","Queens Village","Boro Zone"
192,"Queens","Queensboro Hill","Boro Zone"
193,"Queens","Queensbridge/Ravenswood","Boro Zone"
194,"Manhattan","Randalls Island","Yellow Zone"
195,"Brooklyn","Red Hook","Boro Zone"
196,"Queens","Rego Park","Boro Zone"
197,"Queens","Richmond Hill","Boro Zone"
198,"Queens","Ridgewood","Boro Zone"
199,"Bronx","Rikers Island","Boro Zone"
200,"Bronx","Riverdale/North Riverdale/Fieldston","Boro Zone"
201,"Queens","Rockaway Park","Boro Zone"
202,"Manhattan","Roosevelt Island","Boro Zone"
203,"Queens","Rosedale","Boro Zone"
204,"Staten Island","Rossville/Woodrow","Boro Zone"
205,"Queens","Saint Albans","Boro Zone"
206,"Staten Island","Saint George/New Brighton","Boro Zone"
207,"Queens","Saint Michaels Cemetery/Woodside","Boro Zone"
208,"Bronx","Schuylerville/Edgewater Park","Boro Zone"
209,"Manhattan","Seaport","Yellow Zone"
210,"Brooklyn","Sheepshead Bay","Boro Zone"
211,"Manhattan","SoHo","Yellow Zone"
212,"Bronx","Soundview/Bruckner","Boro Zone"
213,"Bronx","Soundview/Castle Hill","Boro Zone"
214,"Staten Island","South Beach/Dongan Hills","Boro Zone"
215,"Queens","South Jamaica","Boro Zone"
216,"Queens","South Ozone Park","Boro Zone"
217,"Brooklyn","South Williamsburg","Boro Zone"
218,"Queens","Springfield Gardens North","Boro Zone"
219,"Queens","Springfield Gardens South","Boro Zone"
220,"Bronx","Spuyten Duyvil/Kingsbridge","Boro Zone"
221,"Staten Island","Stapleton","Boro Zone"
222,"Brooklyn","Starrett City","Boro Zone"
223,"Queens","Steinway","Boro Zone"
224,"Manhattan","Stuy Town/Peter Cooper Village","Yellow Zone"
225,"Brooklyn","Stuyvesant Heights","Boro Zone"
226,"Queens","Sunnyside","Boro Zone"
227,"Brooklyn","Sunset Park East","Boro Zone"
228,"Brooklyn","Sunset Park West","Boro Zone"
229,"Manhattan","Sutton Place/Turtle Bay North","Yellow Zone"
230,"Manhattan","Times Sq/Theatre District","Yellow Zone"
231,"Manhattan","TriBeCa/Civic Center","Yellow Zone"
232,"Manhattan","Two Bridges/Seward Park","Yellow Zone"
233,"Manhattan","UN/Turtle Bay South","Yellow Zone"
234,"Manhattan","Union Sq","Yellow Zone"
235,"Bronx","University Heights/Morris Heights","Boro Zone"
236,"Manhattan","Upper East Side North","Yellow Zone"
237,"Manhattan","Upper East Side South","Yellow Zone"
238,"Manhattan","Upper West Side North","Yellow Zone"
239,"Manhattan","Upper West Side South","Yellow Zone"
240,"Bronx","Van Cortlandt Park","Boro Zone"
241,"Bronx","Van Cortlandt Village","Boro Zone"
242,"Bronx","Van Nest/Morris Park","Boro Zone"
243,"Manhattan","Washington Heights North","Boro Zone"
244,"Manhattan","Washington Heights South","Boro Zone"
245,"Staten Island","West Brighton","Boro Zone"
246,"Manhattan","West Chelsea/Hudson Yards","Yellow Zone"
247,"Bronx","West Concourse","Boro Zone"
248,"Bronx","West Farms/Bronx River","Boro Zone"
249,"Manhattan","West Village","Yellow Zone"
250,"Bronx","Westchester Village/Unionport","Boro Zone"
251,"Staten Island","Westerleigh","Boro Zone"
252,"Queens","Whitestone","Boro Zone"
253,"Queens","Willets Point","Boro Zone"
254,"Bronx","Williamsbridge/Olinville","Boro Zone"
255,"Brooklyn","Williamsburg (North Side)","Boro Zone"
256,"Brooklyn","Williamsburg (South Side)","Boro Zone"
257,"Brooklyn","Windsor Terrace","Boro Zone"
258,"Queens","Woodhaven","Boro Zone"
259,"Bronx","Woodlawn/Wakefield","Boro Zone"
260,"Queens","Woodside","Boro Zone"
261,"Manhattan","World Trade Center","Yellow Zone"
262,"Manhattan","Yorkville East","Yellow Zone"
263,"Manhattan","Yorkville West","Yellow Zone"
264,"Unknown","NV","N/A"
265,"Unknown","NA","N/A"
1 locationid borough zone service_zone
2 1 EWR Newark Airport EWR
3 2 Queens Jamaica Bay Boro Zone
4 3 Bronx Allerton/Pelham Gardens Boro Zone
5 4 Manhattan Alphabet City Yellow Zone
6 5 Staten Island Arden Heights Boro Zone
7 6 Staten Island Arrochar/Fort Wadsworth Boro Zone
8 7 Queens Astoria Boro Zone
9 8 Queens Astoria Park Boro Zone
10 9 Queens Auburndale Boro Zone
11 10 Queens Baisley Park Boro Zone
12 11 Brooklyn Bath Beach Boro Zone
13 12 Manhattan Battery Park Yellow Zone
14 13 Manhattan Battery Park City Yellow Zone
15 14 Brooklyn Bay Ridge Boro Zone
16 15 Queens Bay Terrace/Fort Totten Boro Zone
17 16 Queens Bayside Boro Zone
18 17 Brooklyn Bedford Boro Zone
19 18 Bronx Bedford Park Boro Zone
20 19 Queens Bellerose Boro Zone
21 20 Bronx Belmont Boro Zone
22 21 Brooklyn Bensonhurst East Boro Zone
23 22 Brooklyn Bensonhurst West Boro Zone
24 23 Staten Island Bloomfield/Emerson Hill Boro Zone
25 24 Manhattan Bloomingdale Yellow Zone
26 25 Brooklyn Boerum Hill Boro Zone
27 26 Brooklyn Borough Park Boro Zone
28 27 Queens Breezy Point/Fort Tilden/Riis Beach Boro Zone
29 28 Queens Briarwood/Jamaica Hills Boro Zone
30 29 Brooklyn Brighton Beach Boro Zone
31 30 Queens Broad Channel Boro Zone
32 31 Bronx Bronx Park Boro Zone
33 32 Bronx Bronxdale Boro Zone
34 33 Brooklyn Brooklyn Heights Boro Zone
35 34 Brooklyn Brooklyn Navy Yard Boro Zone
36 35 Brooklyn Brownsville Boro Zone
37 36 Brooklyn Bushwick North Boro Zone
38 37 Brooklyn Bushwick South Boro Zone
39 38 Queens Cambria Heights Boro Zone
40 39 Brooklyn Canarsie Boro Zone
41 40 Brooklyn Carroll Gardens Boro Zone
42 41 Manhattan Central Harlem Boro Zone
43 42 Manhattan Central Harlem North Boro Zone
44 43 Manhattan Central Park Yellow Zone
45 44 Staten Island Charleston/Tottenville Boro Zone
46 45 Manhattan Chinatown Yellow Zone
47 46 Bronx City Island Boro Zone
48 47 Bronx Claremont/Bathgate Boro Zone
49 48 Manhattan Clinton East Yellow Zone
50 49 Brooklyn Clinton Hill Boro Zone
51 50 Manhattan Clinton West Yellow Zone
52 51 Bronx Co-Op City Boro Zone
53 52 Brooklyn Cobble Hill Boro Zone
54 53 Queens College Point Boro Zone
55 54 Brooklyn Columbia Street Boro Zone
56 55 Brooklyn Coney Island Boro Zone
57 56 Queens Corona Boro Zone
58 57 Queens Corona Boro Zone
59 58 Bronx Country Club Boro Zone
60 59 Bronx Crotona Park Boro Zone
61 60 Bronx Crotona Park East Boro Zone
62 61 Brooklyn Crown Heights North Boro Zone
63 62 Brooklyn Crown Heights South Boro Zone
64 63 Brooklyn Cypress Hills Boro Zone
65 64 Queens Douglaston Boro Zone
66 65 Brooklyn Downtown Brooklyn/MetroTech Boro Zone
67 66 Brooklyn DUMBO/Vinegar Hill Boro Zone
68 67 Brooklyn Dyker Heights Boro Zone
69 68 Manhattan East Chelsea Yellow Zone
70 69 Bronx East Concourse/Concourse Village Boro Zone
71 70 Queens East Elmhurst Boro Zone
72 71 Brooklyn East Flatbush/Farragut Boro Zone
73 72 Brooklyn East Flatbush/Remsen Village Boro Zone
74 73 Queens East Flushing Boro Zone
75 74 Manhattan East Harlem North Boro Zone
76 75 Manhattan East Harlem South Boro Zone
77 76 Brooklyn East New York Boro Zone
78 77 Brooklyn East New York/Pennsylvania Avenue Boro Zone
79 78 Bronx East Tremont Boro Zone
80 79 Manhattan East Village Yellow Zone
81 80 Brooklyn East Williamsburg Boro Zone
82 81 Bronx Eastchester Boro Zone
83 82 Queens Elmhurst Boro Zone
84 83 Queens Elmhurst/Maspeth Boro Zone
85 84 Staten Island Eltingville/Annadale/Prince's Bay Boro Zone
86 85 Brooklyn Erasmus Boro Zone
87 86 Queens Far Rockaway Boro Zone
88 87 Manhattan Financial District North Yellow Zone
89 88 Manhattan Financial District South Yellow Zone
90 89 Brooklyn Flatbush/Ditmas Park Boro Zone
91 90 Manhattan Flatiron Yellow Zone
92 91 Brooklyn Flatlands Boro Zone
93 92 Queens Flushing Boro Zone
94 93 Queens Flushing Meadows-Corona Park Boro Zone
95 94 Bronx Fordham South Boro Zone
96 95 Queens Forest Hills Boro Zone
97 96 Queens Forest Park/Highland Park Boro Zone
98 97 Brooklyn Fort Greene Boro Zone
99 98 Queens Fresh Meadows Boro Zone
100 99 Staten Island Freshkills Park Boro Zone
101 100 Manhattan Garment District Yellow Zone
102 101 Queens Glen Oaks Boro Zone
103 102 Queens Glendale Boro Zone
104 103 Manhattan Governor's Island/Ellis Island/Liberty Island Yellow Zone
105 104 Manhattan Governor's Island/Ellis Island/Liberty Island Yellow Zone
106 105 Manhattan Governor's Island/Ellis Island/Liberty Island Yellow Zone
107 106 Brooklyn Gowanus Boro Zone
108 107 Manhattan Gramercy Yellow Zone
109 108 Brooklyn Gravesend Boro Zone
110 109 Staten Island Great Kills Boro Zone
111 110 Staten Island Great Kills Park Boro Zone
112 111 Brooklyn Green-Wood Cemetery Boro Zone
113 112 Brooklyn Greenpoint Boro Zone
114 113 Manhattan Greenwich Village North Yellow Zone
115 114 Manhattan Greenwich Village South Yellow Zone
116 115 Staten Island Grymes Hill/Clifton Boro Zone
117 116 Manhattan Hamilton Heights Boro Zone
118 117 Queens Hammels/Arverne Boro Zone
119 118 Staten Island Heartland Village/Todt Hill Boro Zone
120 119 Bronx Highbridge Boro Zone
121 120 Manhattan Highbridge Park Boro Zone
122 121 Queens Hillcrest/Pomonok Boro Zone
123 122 Queens Hollis Boro Zone
124 123 Brooklyn Homecrest Boro Zone
125 124 Queens Howard Beach Boro Zone
126 125 Manhattan Hudson Sq Yellow Zone
127 126 Bronx Hunts Point Boro Zone
128 127 Manhattan Inwood Boro Zone
129 128 Manhattan Inwood Hill Park Boro Zone
130 129 Queens Jackson Heights Boro Zone
131 130 Queens Jamaica Boro Zone
132 131 Queens Jamaica Estates Boro Zone
133 132 Queens JFK Airport Airports
134 133 Brooklyn Kensington Boro Zone
135 134 Queens Kew Gardens Boro Zone
136 135 Queens Kew Gardens Hills Boro Zone
137 136 Bronx Kingsbridge Heights Boro Zone
138 137 Manhattan Kips Bay Yellow Zone
139 138 Queens LaGuardia Airport Airports
140 139 Queens Laurelton Boro Zone
141 140 Manhattan Lenox Hill East Yellow Zone
142 141 Manhattan Lenox Hill West Yellow Zone
143 142 Manhattan Lincoln Square East Yellow Zone
144 143 Manhattan Lincoln Square West Yellow Zone
145 144 Manhattan Little Italy/NoLiTa Yellow Zone
146 145 Queens Long Island City/Hunters Point Boro Zone
147 146 Queens Long Island City/Queens Plaza Boro Zone
148 147 Bronx Longwood Boro Zone
149 148 Manhattan Lower East Side Yellow Zone
150 149 Brooklyn Madison Boro Zone
151 150 Brooklyn Manhattan Beach Boro Zone
152 151 Manhattan Manhattan Valley Yellow Zone
153 152 Manhattan Manhattanville Boro Zone
154 153 Manhattan Marble Hill Boro Zone
155 154 Brooklyn Marine Park/Floyd Bennett Field Boro Zone
156 155 Brooklyn Marine Park/Mill Basin Boro Zone
157 156 Staten Island Mariners Harbor Boro Zone
158 157 Queens Maspeth Boro Zone
159 158 Manhattan Meatpacking/West Village West Yellow Zone
160 159 Bronx Melrose South Boro Zone
161 160 Queens Middle Village Boro Zone
162 161 Manhattan Midtown Center Yellow Zone
163 162 Manhattan Midtown East Yellow Zone
164 163 Manhattan Midtown North Yellow Zone
165 164 Manhattan Midtown South Yellow Zone
166 165 Brooklyn Midwood Boro Zone
167 166 Manhattan Morningside Heights Boro Zone
168 167 Bronx Morrisania/Melrose Boro Zone
169 168 Bronx Mott Haven/Port Morris Boro Zone
170 169 Bronx Mount Hope Boro Zone
171 170 Manhattan Murray Hill Yellow Zone
172 171 Queens Murray Hill-Queens Boro Zone
173 172 Staten Island New Dorp/Midland Beach Boro Zone
174 173 Queens North Corona Boro Zone
175 174 Bronx Norwood Boro Zone
176 175 Queens Oakland Gardens Boro Zone
177 176 Staten Island Oakwood Boro Zone
178 177 Brooklyn Ocean Hill Boro Zone
179 178 Brooklyn Ocean Parkway South Boro Zone
180 179 Queens Old Astoria Boro Zone
181 180 Queens Ozone Park Boro Zone
182 181 Brooklyn Park Slope Boro Zone
183 182 Bronx Parkchester Boro Zone
184 183 Bronx Pelham Bay Boro Zone
185 184 Bronx Pelham Bay Park Boro Zone
186 185 Bronx Pelham Parkway Boro Zone
187 186 Manhattan Penn Station/Madison Sq West Yellow Zone
188 187 Staten Island Port Richmond Boro Zone
189 188 Brooklyn Prospect-Lefferts Gardens Boro Zone
190 189 Brooklyn Prospect Heights Boro Zone
191 190 Brooklyn Prospect Park Boro Zone
192 191 Queens Queens Village Boro Zone
193 192 Queens Queensboro Hill Boro Zone
194 193 Queens Queensbridge/Ravenswood Boro Zone
195 194 Manhattan Randalls Island Yellow Zone
196 195 Brooklyn Red Hook Boro Zone
197 196 Queens Rego Park Boro Zone
198 197 Queens Richmond Hill Boro Zone
199 198 Queens Ridgewood Boro Zone
200 199 Bronx Rikers Island Boro Zone
201 200 Bronx Riverdale/North Riverdale/Fieldston Boro Zone
202 201 Queens Rockaway Park Boro Zone
203 202 Manhattan Roosevelt Island Boro Zone
204 203 Queens Rosedale Boro Zone
205 204 Staten Island Rossville/Woodrow Boro Zone
206 205 Queens Saint Albans Boro Zone
207 206 Staten Island Saint George/New Brighton Boro Zone
208 207 Queens Saint Michaels Cemetery/Woodside Boro Zone
209 208 Bronx Schuylerville/Edgewater Park Boro Zone
210 209 Manhattan Seaport Yellow Zone
211 210 Brooklyn Sheepshead Bay Boro Zone
212 211 Manhattan SoHo Yellow Zone
213 212 Bronx Soundview/Bruckner Boro Zone
214 213 Bronx Soundview/Castle Hill Boro Zone
215 214 Staten Island South Beach/Dongan Hills Boro Zone
216 215 Queens South Jamaica Boro Zone
217 216 Queens South Ozone Park Boro Zone
218 217 Brooklyn South Williamsburg Boro Zone
219 218 Queens Springfield Gardens North Boro Zone
220 219 Queens Springfield Gardens South Boro Zone
221 220 Bronx Spuyten Duyvil/Kingsbridge Boro Zone
222 221 Staten Island Stapleton Boro Zone
223 222 Brooklyn Starrett City Boro Zone
224 223 Queens Steinway Boro Zone
225 224 Manhattan Stuy Town/Peter Cooper Village Yellow Zone
226 225 Brooklyn Stuyvesant Heights Boro Zone
227 226 Queens Sunnyside Boro Zone
228 227 Brooklyn Sunset Park East Boro Zone
229 228 Brooklyn Sunset Park West Boro Zone
230 229 Manhattan Sutton Place/Turtle Bay North Yellow Zone
231 230 Manhattan Times Sq/Theatre District Yellow Zone
232 231 Manhattan TriBeCa/Civic Center Yellow Zone
233 232 Manhattan Two Bridges/Seward Park Yellow Zone
234 233 Manhattan UN/Turtle Bay South Yellow Zone
235 234 Manhattan Union Sq Yellow Zone
236 235 Bronx University Heights/Morris Heights Boro Zone
237 236 Manhattan Upper East Side North Yellow Zone
238 237 Manhattan Upper East Side South Yellow Zone
239 238 Manhattan Upper West Side North Yellow Zone
240 239 Manhattan Upper West Side South Yellow Zone
241 240 Bronx Van Cortlandt Park Boro Zone
242 241 Bronx Van Cortlandt Village Boro Zone
243 242 Bronx Van Nest/Morris Park Boro Zone
244 243 Manhattan Washington Heights North Boro Zone
245 244 Manhattan Washington Heights South Boro Zone
246 245 Staten Island West Brighton Boro Zone
247 246 Manhattan West Chelsea/Hudson Yards Yellow Zone
248 247 Bronx West Concourse Boro Zone
249 248 Bronx West Farms/Bronx River Boro Zone
250 249 Manhattan West Village Yellow Zone
251 250 Bronx Westchester Village/Unionport Boro Zone
252 251 Staten Island Westerleigh Boro Zone
253 252 Queens Whitestone Boro Zone
254 253 Queens Willets Point Boro Zone
255 254 Bronx Williamsbridge/Olinville Boro Zone
256 255 Brooklyn Williamsburg (North Side) Boro Zone
257 256 Brooklyn Williamsburg (South Side) Boro Zone
258 257 Brooklyn Windsor Terrace Boro Zone
259 258 Queens Woodhaven Boro Zone
260 259 Bronx Woodlawn/Wakefield Boro Zone
261 260 Queens Woodside Boro Zone
262 261 Manhattan World Trade Center Yellow Zone
263 262 Manhattan Yorkville East Yellow Zone
264 263 Manhattan Yorkville West Yellow Zone
265 264 Unknown NV N/A
266 265 Unknown NA N/A

122
05-batch/README.md Normal file
View File

@ -0,0 +1,122 @@
# Module 5: Batch Processing
## 5.1 Introduction
* :movie_camera: 5.1.1 Introduction to Batch Processing
[![](https://markdown-videos-api.jorgenkh.no/youtube/dcHe5Fl3MF8)](https://youtu.be/dcHe5Fl3MF8&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=51)
* :movie_camera: 5.1.2 Introduction to Spark
[![](https://markdown-videos-api.jorgenkh.no/youtube/FhaqbEOuQ8U)](https://youtu.be/FhaqbEOuQ8U&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=52)
## 5.2 Installation
Follow [these intructions](setup/) to install Spark:
* [Windows](setup/windows.md)
* [Linux](setup/linux.md)
* [MacOS](setup/macos.md)
And follow [this](setup/pyspark.md) to run PySpark in Jupyter
* :movie_camera: 5.2.1 (Optional) Installing Spark (Linux)
[![](https://markdown-videos-api.jorgenkh.no/youtube/hqUbB9c8sKg)](https://youtu.be/hqUbB9c8sKg&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=53)
Alternatively, if the setups above don't work, you can run Spark in Google Colab.
> [!NOTE]
> It's advisable to invest some time in setting things up locally rather than immediately jumping into this solution
* [Google Colab Instructions](https://medium.com/gitconnected/launch-spark-on-google-colab-and-connect-to-sparkui-342cad19b304)
* [Google Colab Starter Notebook](https://github.com/aaalexlit/medium_articles/blob/main/Spark_in_Colab.ipynb)
## 5.3 Spark SQL and DataFrames
* :movie_camera: 5.3.1 First Look at Spark/PySpark
[![](https://markdown-videos-api.jorgenkh.no/youtube/r_Sf6fCB40c)](https://youtu.be/r_Sf6fCB40c&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=54)
* :movie_camera: 5.3.2 Spark Dataframes
[![](https://markdown-videos-api.jorgenkh.no/youtube/ti3aC1m3rE8)](https://youtu.be/ti3aC1m3rE8&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=55)
* :movie_camera: 5.3.3 (Optional) Preparing Yellow and Green Taxi Data
[![](https://markdown-videos-api.jorgenkh.no/youtube/CI3P4tAtru4)](https://youtu.be/CI3P4tAtru4&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=56)
Script to prepare the Dataset [download_data.sh](code/download_data.sh)
> [!NOTE]
> The other way to infer the schema (apart from pandas) for the csv files, is to set the `inferSchema` option to `true` while reading the files in Spark.
* :movie_camera: 5.3.4 SQL with Spark
[![](https://markdown-videos-api.jorgenkh.no/youtube/uAlp2VuZZPY)](https://youtu.be/uAlp2VuZZPY&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=57)
## 5.4 Spark Internals
* :movie_camera: 5.4.1 Anatomy of a Spark Cluster
[![](https://markdown-videos-api.jorgenkh.no/youtube/68CipcZt7ZA)](https://youtu.be/68CipcZt7ZA&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=58)
* :movie_camera: 5.4.2 GroupBy in Spark
[![](https://markdown-videos-api.jorgenkh.no/youtube/9qrDsY_2COo)](https://youtu.be/9qrDsY_2COo&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=59)
* :movie_camera: 5.4.3 Joins in Spark
[![](https://markdown-videos-api.jorgenkh.no/youtube/lu7TrqAWuH4)](https://youtu.be/lu7TrqAWuH4&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=60)
## 5.5 (Optional) Resilient Distributed Datasets
* :movie_camera: 5.5.1 Operations on Spark RDDs
[![](https://markdown-videos-api.jorgenkh.no/youtube/Bdu-xIrF3OM)](https://youtu.be/Bdu-xIrF3OM&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=61)
* :movie_camera: 5.5.2 Spark RDD mapPartition
[![](https://markdown-videos-api.jorgenkh.no/youtube/k3uB2K99roI)](https://youtu.be/k3uB2K99roI&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=62)
## 5.6 Running Spark in the Cloud
* :movie_camera: 5.6.1 Connecting to Google Cloud Storage
[![](https://markdown-videos-api.jorgenkh.no/youtube/Yyz293hBVcQ)](https://youtu.be/Yyz293hBVcQ&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=63)
* :movie_camera: 5.6.2 Creating a Local Spark Cluster
[![](https://markdown-videos-api.jorgenkh.no/youtube/HXBwSlXo5IA)](https://youtu.be/HXBwSlXo5IA&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=64)
* :movie_camera: 5.6.3 Setting up a Dataproc Cluster
[![](https://markdown-videos-api.jorgenkh.no/youtube/osAiAYahvh8)](https://youtu.be/osAiAYahvh8&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=65)
* :movie_camera: 5.6.4 Connecting Spark to Big Query
[![](https://markdown-videos-api.jorgenkh.no/youtube/HIm2BOj8C0Q)](https://youtu.be/HIm2BOj8C0Q&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=66)
# Homework
* [2024 Homework](../cohorts/2024/05-batch/homework.md)
# Community notes
Did you take notes? You can share them here.
* [Notes by Alvaro Navas](https://github.com/ziritrion/dataeng-zoomcamp/blob/main/notes/5_batch_processing.md)
* [Sandy's DE Learning Blog](https://learningdataengineering540969211.wordpress.com/2022/02/24/week-5-de-zoomcamp-5-2-1-installing-spark-on-linux/)
* [Notes by Alain Boisvert](https://github.com/boisalai/de-zoomcamp-2023/blob/main/week5.md)
* [Alternative : Using docker-compose to launch spark by rafik](https://gist.github.com/rafik-rahoui/f98df941c4ccced9c46e9ccbdef63a03)
* [Marcos Torregrosa's blog (spanish)](https://www.n4gash.com/2023/data-engineering-zoomcamp-semana-5-batch-spark)
* [Notes by Victor Padilha](https://github.com/padilha/de-zoomcamp/tree/master/week5)
* [Notes by Oscar Garcia](https://github.com/ozkary/Data-Engineering-Bootcamp/tree/main/Step5-Batch-Processing)
* [Notes by HongWei](https://github.com/hwchua0209/data-engineering-zoomcamp-submission/blob/main/05-batch-processing/README.md)
* [2024 videos transcript](https://drive.google.com/drive/folders/1XMmP4H5AMm1qCfMFxc_hqaPGw31KIVcb?usp=drive_link) by Maria Fisher
* Add your notes here (above this line)

View File

@ -65,7 +65,17 @@
}
],
"source": [
"!wget https://nyc-tlc.s3.amazonaws.com/trip+data/fhvhv_tripdata_2021-01.csv"
"!wget https://github.com/DataTalksClub/nyc-tlc-data/releases/download/fhvhv/fhvhv_tripdata_2021-01.csv.gz"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "201a5957",
"metadata": {},
"outputs": [],
"source": [
"!gzip -dc fhvhv_tripdata_2021-01.csv.gz"
]
},
{
@ -501,25 +511,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
"hvfhs_license_num,dispatching_base_num,pickup_datetime,dropoff_datetime,PULocationID,DOLocationID,SR_Flag\r",
"hvfhs_license_num,dispatching_base_num,pickup_datetime,dropoff_datetime,PULocationID,DOLocationID,SR_Flag\r\n",
"\r\n",
"HV0003,B02682,2021-01-01 00:33:44,2021-01-01 00:49:07,230,166,\r",
"HV0003,B02682,2021-01-01 00:33:44,2021-01-01 00:49:07,230,166,\r\n",
"\r\n",
"HV0003,B02682,2021-01-01 00:55:19,2021-01-01 01:18:21,152,167,\r",
"HV0003,B02682,2021-01-01 00:55:19,2021-01-01 01:18:21,152,167,\r\n",
"\r\n",
"HV0003,B02764,2021-01-01 00:23:56,2021-01-01 00:38:05,233,142,\r",
"HV0003,B02764,2021-01-01 00:23:56,2021-01-01 00:38:05,233,142,\r\n",
"\r\n",
"HV0003,B02764,2021-01-01 00:42:51,2021-01-01 00:45:50,142,143,\r",
"HV0003,B02764,2021-01-01 00:42:51,2021-01-01 00:45:50,142,143,\r\n",
"\r\n",
"HV0003,B02764,2021-01-01 00:48:14,2021-01-01 01:08:42,143,78,\r",
"HV0003,B02764,2021-01-01 00:48:14,2021-01-01 01:08:42,143,78,\r\n",
"\r\n",
"HV0005,B02510,2021-01-01 00:06:59,2021-01-01 00:43:01,88,42,\r",
"HV0005,B02510,2021-01-01 00:06:59,2021-01-01 00:43:01,88,42,\r\n",
"\r\n",
"HV0005,B02510,2021-01-01 00:50:00,2021-01-01 01:04:57,42,151,\r",
"HV0005,B02510,2021-01-01 00:50:00,2021-01-01 01:04:57,42,151,\r\n",
"\r\n",
"HV0003,B02764,2021-01-01 00:14:30,2021-01-01 00:50:27,71,226,\r",
"HV0003,B02764,2021-01-01 00:14:30,2021-01-01 00:50:27,71,226,\r\n",
"\r\n",
"HV0003,B02875,2021-01-01 00:22:54,2021-01-01 00:30:20,112,255,\r",
"HV0003,B02875,2021-01-01 00:22:54,2021-01-01 00:30:20,112,255,\r\n",
"\r\n"
]
}

View File

@ -57,8 +57,7 @@ rm openjdk-11.0.2_linux-x64_bin.tar.gz
Download Spark. Use 3.3.2 version:
```bash
wget https://dlcdn.apache.org/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz
wget https://archive.apache.org/dist/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz
```
Unpack:

View File

@ -10,7 +10,7 @@ for other MacOS versions as well
Ensure Brew and Java installed in your system:
```bash
xcode-select install
xcode-select --install
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"
brew install java
```
@ -24,12 +24,37 @@ export PATH="$JAVA_HOME/bin/:$PATH"
Make sure Java was installed to `/usr/local/Cellar/openjdk@11/11.0.12`: Open Finder > Press Cmd+Shift+G > paste "/usr/local/Cellar/openjdk@11/11.0.12". If you can't find it, then change the path location to appropriate path on your machine. You can also run `brew info java` to check where java was installed on your machine.
### Anaconda-based spark set up
if you are having anaconda setup, you can skip the spark installation and instead Pyspark package to run the spark.
With Anaconda and Mac we can spark set by first installing pyspark and then for environment variable set up findspark
Open Anaconda Activate the environment where you want to apply these changes
Run pyspark and install it as a package in this environment <br>
Run findspark and install it as a package in this environment
Ensure that open JDK is already set up. This allows us to not have to install Spark separately and manually set up the environment Also with this we may have to use Jupyter Lab (instead of Jupyter Notebook) to open a Jupyter notebook for running the programs.
Once the Spark is set up start the conda environment and open Jupyter Lab.
Run the program below in notebook to check everything is running fine.
```
import pyspark
from pyspark.sql import SparkSession
!spark-shell --version
# Create SparkSession
spark = SparkSession.builder.master("local[1]") \
.appName('test-spark') \
.getOrCreate()
print(f'The PySpark {spark.version} version is running...')
```
### Installing Spark
1. Install Scala
```bash
brew install scala@2.11
brew install scala@2.13
```
2. Install Apache Spark
@ -64,3 +89,4 @@ distData.filter(_ < 10).collect()
It's the same for all platforms. Go to [pyspark.md](pyspark.md).

View File

@ -20,13 +20,21 @@ For example, if the file under `${SPARK_HOME}/python/lib/` is `py4j-0.10.9.3-src
export PYTHONPATH="${SPARK_HOME}/python/lib/py4j-0.10.9.3-src.zip:$PYTHONPATH"
```
On Windows, you may have to do path conversion from unix-style to windowns-style:
```bash
SPARK_WIN=`cygpath -w ${SPARK_HOME}`
export PYTHONPATH="${SPARK_WIN}\\python\\"
export PYTHONPATH="${SPARK_WIN}\\python\\lib\\py4j-0.10.9-src.zip;$PYTHONPATH"
```
Now you can run Jupyter or IPython to test if things work. Go to some other directory, e.g. `~/tmp`.
Download a CSV file that we'll use for testing:
```bash
wget https://s3.amazonaws.com/nyc-tlc/misc/taxi+_zone_lookup.csv
wget https://d37ci6vzurychx.cloudfront.net/misc/taxi_zone_lookup.csv
```
Now let's run `ipython` (or `jupyter notebook`) and execute:
@ -42,7 +50,7 @@ spark = SparkSession.builder \
df = spark.read \
.option("header", "true") \
.csv('taxi+_zone_lookup.csv')
.csv('taxi_zone_lookup.csv')
df.show()
```

View File

@ -56,6 +56,19 @@ for FILE in ${FILES}; do
done
```
If you don't have wget, you can use curl:
```bash
HADOOP_VERSION="3.2.0"
PREFIX="https://raw.githubusercontent.com/cdarlint/winutils/master/hadoop-${HADOOP_VERSION}/bin/"
FILES="hadoop.dll hadoop.exp hadoop.lib hadoop.pdb libwinutils.lib winutils.exe winutils.pdb"
for FILE in ${FILES}; do
curl -o "${FILE}" "${PREFIX}/${FILE}";
done
```
Add it to `PATH`:
```bash
@ -68,7 +81,7 @@ export PATH="${HADOOP_HOME}/bin:${PATH}"
Now download Spark. Select version 3.3.2
```bash
wget https://dlcdn.apache.org/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz
wget https://archive.apache.org/dist/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz
```

131
06-streaming/README.md Normal file
View File

@ -0,0 +1,131 @@
# Module 6: Stream Processing
# Code structure
* [Java examples](java)
* [Python examples](python)
* [KSQLD examples](ksqldb)
## Confluent cloud setup
Confluent cloud provides a free 30 days trial for, you can signup [here](https://www.confluent.io/confluent-cloud/tryfree/)
## Introduction to Stream Processing
- [Slides](https://docs.google.com/presentation/d/1bCtdCba8v1HxJ_uMm9pwjRUC-NAMeB-6nOG2ng3KujA/edit?usp=sharing)
- :movie_camera: 6.0.1 Introduction
[![](https://markdown-videos-api.jorgenkh.no/youtube/hfvju3iOIP0)](https://youtu.be/hfvju3iOIP0&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=67)
- :movie_camera: 6.0.2 What is stream processing
[![](https://markdown-videos-api.jorgenkh.no/youtube/WxTxKGcfA-k)](https://youtu.be/WxTxKGcfA-k&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=68)
## Introduction to Kafka
- :movie_camera: 6.3 What is kafka?
[![](https://markdown-videos-api.jorgenkh.no/youtube/zPLZUDPi4AY)](https://youtu.be/zPLZUDPi4AY&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=69)
- :movie_camera: 6.4 Confluent cloud
[![](https://markdown-videos-api.jorgenkh.no/youtube/ZnEZFEYKppw)](https://youtu.be/ZnEZFEYKppw&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=70)
- :movie_camera: 6.5 Kafka producer consumer
[![](https://markdown-videos-api.jorgenkh.no/youtube/aegTuyxX7Yg)](https://youtu.be/aegTuyxX7Yg&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=71)
## Kafka Configuration
- :movie_camera: 6.6 Kafka configuration
[![](https://markdown-videos-api.jorgenkh.no/youtube/SXQtWyRpMKs)](https://youtu.be/SXQtWyRpMKs&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=72)
- [Kafka Configuration Reference](https://docs.confluent.io/platform/current/installation/configuration/)
## Kafka Streams
- [Slides](https://docs.google.com/presentation/d/1fVi9sFa7fL2ZW3ynS5MAZm0bRSZ4jO10fymPmrfTUjE/edit?usp=sharing)
- [Streams Concepts](https://docs.confluent.io/platform/current/streams/concepts.html)
- :movie_camera: 6.7 Kafka streams basics
[![](https://markdown-videos-api.jorgenkh.no/youtube/dUyA_63eRb0)](https://youtu.be/dUyA_63eRb0&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=73)
- :movie_camera: 6.8 Kafka stream join
[![](https://markdown-videos-api.jorgenkh.no/youtube/NcpKlujh34Y)](https://youtu.be/NcpKlujh34Y&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=74)
- :movie_camera: 6.9 Kafka stream testing
[![](https://markdown-videos-api.jorgenkh.no/youtube/TNx5rmLY8Pk)](https://youtu.be/TNx5rmLY8Pk&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=75)
- :movie_camera: 6.10 Kafka stream windowing
[![](https://markdown-videos-api.jorgenkh.no/youtube/r1OuLdwxbRc)](https://youtu.be/r1OuLdwxbRc&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=76)
- :movie_camera: 6.11 Kafka ksqldb & Connect
[![](https://markdown-videos-api.jorgenkh.no/youtube/DziQ4a4tn9Y)](https://youtu.be/DziQ4a4tn9Y&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=77)
- :movie_camera: 6.12 Kafka Schema registry
[![](https://markdown-videos-api.jorgenkh.no/youtube/tBY_hBuyzwI)](https://youtu.be/tBY_hBuyzwI&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=78)
## Faust - Python Stream Processing
- [Faust Documentation](https://faust.readthedocs.io/en/latest/index.html)
- [Faust vs Kafka Streams](https://faust.readthedocs.io/en/latest/playbooks/vskafka.html)
## Pyspark - Structured Streaming
Please follow the steps described under [pyspark-streaming](python/streams-example/pyspark/README.md)
- :movie_camera: 6.13 Kafka Streaming with Python
[![](https://markdown-videos-api.jorgenkh.no/youtube/BgAlVknDFlQ)](https://youtu.be/BgAlVknDFlQ&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=79)
- :movie_camera: 6.14 Pyspark Structured Streaming
[![](https://markdown-videos-api.jorgenkh.no/youtube/VIVr7KwRQmE)](https://youtu.be/VIVr7KwRQmE&list=PL3MmuxUbc_hJed7dXYoJw8DoCuVHhGEQb&index=80)
## Kafka Streams with JVM library
- [Confluent Kafka Streams](https://kafka.apache.org/documentation/streams/)
- [Scala Example](https://github.com/AnkushKhanna/kafka-helper/tree/master/src/main/scala/kafka/schematest)
## KSQL and ksqlDB
- [Introducing KSQL: Streaming SQL for Apache Kafka](https://www.confluent.io/blog/ksql-streaming-sql-for-apache-kafka/)
- [ksqlDB](https://ksqldb.io/)
## Kafka Connect
- [Making Sense of Stream Data](https://medium.com/analytics-vidhya/making-sense-of-stream-data-b74c1252a8f5)
## Docker
### Starting cluster
## Command line for Kafka
### Create topic
```bash
./bin/kafka-topics.sh --create --topic demo_1 --bootstrap-server localhost:9092 --partitions 2
```
## Homework
* [2024 Homework](../cohorts/2024/06-streaming/homework.md)
## Community notes
Did you take notes? You can share them here.
* [Notes by Alvaro Navas](https://github.com/ziritrion/dataeng-zoomcamp/blob/main/notes/6_streaming.md )
* [Marcos Torregrosa's blog (spanish)](https://www.n4gash.com/2023/data-engineering-zoomcamp-semana-6-stream-processing/)
* [Notes by Oscar Garcia](https://github.com/ozkary/Data-Engineering-Bootcamp/tree/main/Step6-Streaming)
* [2024 videos transcript](https://drive.google.com/drive/folders/1UngeL5FM-GcDLM7QYaDTKb3jIS6CQC14?usp=drive_link) by Maria Fisher
* [Notes by Shayan Shafiee Moghadam](https://github.com/shayansm2/eng-notebook/blob/main/kafka/readme.md)
* Add your notes here (above this line)

Some files were not shown because too many files have changed in this diff Show More